
73

A Hybrid UDE+NN Approach for Dynamic

Performance Modeling in Microservices
Vijay Ramamoorthi
Independent Researcher

Abstract
Microservice architectures have become a cornerstone of modern cloud-based systems due

to their scalability, modularity, and flexibility. However, managing the performance of

such distributed systems in dynamic environments presents significant challenges.

Traditional performance models, such as fluid models based on queuing theory, often fail

to capture the nonlinear and dynamic interactions between microservices, especially under

fluctuating load conditions. In this paper, we propose a hybrid modeling approach that

integrates Universal Differential Equations (UDEs) with Neural Networks (NNs) to

enhance the accuracy and flexibility of microservice performance predictions. The

UDE+NN model combines the interpretability and efficiency of fluid models with the

adaptive learning capabilities of neural networks, capturing unmodeled system dynamics

and improving the prediction of key performance metrics, including queue lengths and

response times. Through extensive simulations, we demonstrate that the hybrid model

significantly outperforms traditional fluid models, particularly in high-load and variable-

traffic scenarios. Furthermore, the UDE+NN model enables real-time optimization of load

balancing strategies, leading to better resource allocation and reduced operational costs.

This work provides a robust framework for real-time performance management of

microservice architectures, offering enhanced adaptability and predictive accuracy.

Keywords: Microservice architectures, Universal Differential Equations, Neural Networks,

Fluid models, Performance prediction

Introduction
Microservices have emerged as a dominant architectural paradigm for cloud-based

applications due to their modularity, scalability, and ability to support continuous delivery

and deployment. Unlike traditional monolithic architectures, where all services are tightly

coupled, microservice architectures consist of small, independently deployable services

that communicate with each other over a network. Each microservice is responsible for a

specific piece of functionality, which allows for flexibility in development, scaling, and

maintenance [1]–[3]. This decentralized nature enables organizations to develop more

resilient and scalable systems, often with the capability to handle millions of requests per

second.

Despite these benefits, microservices introduce unique challenges in managing

performance, especially in dynamic environments. The distributed nature of

microservices, combined with their independence, leads to complex interactions

between services. These interactions are often nonlinear, making it difficult to predict

system behavior under varying loads. Load fluctuations, service failures, and the need for

elastic scaling in response to demand are just a few of the dynamic factors that make

Cite this research:
V. Ramamoorthi, “A
Hybrid UDE+NN
Approach for Dynamic
Performance Modeling in
Microservices”, SSRET,
vol. 3, no. 1, pp. 73–86,
Dec. 2020.

Article history:
Received:
January/12/2020
Accepted:
August/08/2020

.

74

performance modeling for microservices a non-trivial problem. Effective management of

these systems requires accurate prediction of performance metrics such as queue

lengths, response times, and resource utilization, which are critical for maintaining

service-level agreements (SLAs) and ensuring the overall reliability of the system [4]–[6].

Limitations of Existing Models

Traditionally, queuing theory and fluid models have been employed to predict the

performance of distributed systems, including microservice architectures. Fluid models

simplify the system dynamics by approximating discrete events, such as request arrivals

and processing times, with continuous flows. These models are particularly effective for

calculating steady-state performance metrics, such as average response times and queue

lengths, under stable conditions. However, they come with several limitations:

1. Steady-State Assumption: Fluid models often assume that the system operates

under steady-state conditions, where arrival rates and service times are constant

over time. In real-world microservice architectures, however, traffic patterns are

highly variable, with frequent changes in load and user demand. This variability

makes fluid models less accurate in transient conditions.

2. Simplified Dynamics: While fluid models can provide a reasonable approximation

of system behavior under controlled conditions, they fail to capture the full

complexity of modern microservice architectures. In particular, they do not

account for the nonlinear interactions between services, nor do they consider

dynamic resource allocation mechanisms such as autoscaling, which allows

services to adjust their resource usage in real-time based on demand.

3. Lack of Generalization: Due to their reliance on pre-defined system parameters,

fluid models are not generalizable across different operating conditions. Frequent

recalibration is required whenever system parameters, such as load distribution

or routing policies, change. This limits the practicality of these models for real-

time performance management in highly dynamic systems.

Given these limitations, there is a clear need for more adaptive models that can capture

the residual dynamics and nonlinear interactions inherent in microservice-based systems,

particularly under dynamic load conditions. The inability of traditional models to

accurately predict system behavior in such environments motivates the exploration of

hybrid approaches that leverage machine learning techniques.

Proposed Approach

To address the aforementioned challenges, we propose a hybrid modeling approach that

combines Universal Differential Equations (UDEs) with Neural Networks (NNs) to enhance

the performance modeling of microservice architectures. UDEs integrate neural networks

directly into the differential equations that govern the system's behavior, enabling the

75

model to capture both known and unknown dynamics in the system. This hybrid model

leverages the interpretability and efficiency of fluid models while incorporating the

flexibility of neural networks to account for unmodeled dynamics and non-linear

interactions. In this approach, the fluid model serves as the baseline, capturing the

average behavior of the system under predefined conditions. The neural network,

embedded within the differential equations, learns the residual dynamics—those aspects

of system behavior that the fluid model cannot accurately predict. These include transient

load spikes, non-linear interactions between microservices, and dynamic resource

allocation strategies. By training the neural network to learn these residuals, the hybrid

UDE+NN model can generalize across a wider range of operating conditions and provide

more accurate performance predictions without requiring frequent recalibration. The key

advantage of this approach is its ability to adapt to changing system conditions in real-

time, making it highly suitable for cloud-based microservice architectures. Additionally,

the integration of neural networks into the differential equation framework allows for

continuous learning of system dynamics, reducing the need for large amounts of labeled

data and extensive retraining.

Literature Review and Problem Definition:

Microservices are becoming increasingly prevalent in cloud-based architectures due to

their modularity, scalability, and flexibility. However, the distributed nature of

microservices poses challenges in system management, especially when predicting and

controlling performance under varying loads. Numerous studies have explored the use of

queuing theory, fluid models, and neural networks to address performance bottlenecks

and improve the efficiency of microservice systems.

Traditional queuing models, such as those based on fluid approximations, have been

widely used to analyze the performance of microservices. Everling (1975) laid the

foundation for applying queuing theory to computer networks, providing a means to

predict system performance metrics like response times and throughput [7]. Fluid models

provide an analytical approach to predict system behavior by treating discrete request

arrivals as continuous flows . These models are efficient for modeling the average system

behavior under steady-state conditions. However, these models often fail to capture the

transient and dynamic behavior inherent in real-world microservice architectures, where

load fluctuations and non-linear interactions between services can lead to inaccurate

predictions. While fluid models excel at providing baseline approximations, they often fall

short when applied to complex, dynamic systems like microservices [8]–[10]. For

example, fluid models assume that the system operates under steady-state conditions,

making them less effective in capturing transient spikes or dips in traffic, which are

common in microservice-based systems.

Advancements in hybrid modeling approaches have introduced Universal Differential

Equations (UDEs), which integrate neural networks with differential equations to model

systems with both known and unknown dynamics [11]–[14]. This approach has been

successfully applied to control problems, enabling better predictions in dynamic

environments where system behavior evolves over time. Neural networks have been

76

widely applied in system modeling, especially in cases where traditional models fail to

capture non-linear relationships or when labeled data is scarce. Hornik et al. (1989)

demonstrated that neural networks can serve as universal approximators, meaning they

can model any continuous function to a high degree of accuracy [15]. This property makes

neural networks suitable for learning the residual dynamics in systems where fluid models

provide only an incomplete representation. Studies by LeCun et al. (2015) further

supported the use of neural networks in complex system modeling, particularly in areas

like image recognition and system optimization [16].

Problem Definition

Microservice performance modeling presents unique challenges due to the distributed

and dynamic nature of these systems. Traditional queuing models, such as those based

on fluid approximations, have been extensively used to model and predict system

behaviors like average response times and queue lengths. These models simplify the

system dynamics, assuming steady-state conditions and uniform load distributions. While

fluid models can provide reasonable approximations under stable conditions, they often

fail to capture the complexities of real-world microservice systems, where load conditions

fluctuate, services interact in non-linear ways, and failures in one service can propagate

throughout the system. For instance, in a typical microservice architecture, a load

balancer distributes requests to different service replicas based on probabilistic routing

policies.

The problem, therefore, lies in the inability of traditional fluid models to account for

unmodeled dynamics in microservice systems. Specifically, fluid models often fail to

capture:

1. Non-linear Load Interactions: Microservices interact in ways that can amplify or

dampen performance issues. For instance, a spike in traffic to one service can

indirectly affect the performance of other services due to shared resources or

cascading failures.

2. Dynamic Load Conditions: Microservices operate under variable loads, and

performance metrics such as queue lengths and response times can change

rapidly as request rates fluctuate.

3. Residual Dynamics: Many system behaviors are not fully captured by fluid

models, particularly under high-load conditions or during transient states (e.g.,

service recovery or scaling events).

Proposed Solution

To address these limitations, we propose a hybrid model that combines Universal

Differential Equations (UDEs) with Neural Networks (NNs) to enhance microservice

performance modeling. UDEs integrate neural networks directly into the differential

equations that govern the system's behavior, allowing the model to learn the residual

77

dynamics that traditional fluid models cannot capture [17], [18]. By embedding NNs into

the fluid model framework, we extend its predictive range, enabling the model to adapt

to changing load conditions and interactions between services without frequent

retraining.

Methodology:

We begin by modeling the microservice system as a multiclass processor-sharing queuing

network, where each service replica (queue) handles different classes of requests. The

model follows a mean-field approximation that captures the steady-state behavior of the

system. In this context, each queue processes a mix of request types, and the system

dynamically distributes requests across multiple queues through a load balancer that

follows a probabilistic routing mechanism.

Let | |() Sx t  represent the state of the system at time t, where |S| is the total number

of phase states across all queues. The state vector ()x t captures the average number of

requests in each phase of the service. The system is governed by the following differential

equation:

 (, ,)
dx

F x p
dt

= (1)

where | |C is the vector of arrival rates for each class of requests, and | | | |C Cp  is

the probabilistic routing matrix, defining the probabilities of transitioning between

different classes in the system. The function (, ,)F x p is defined as:

 (, ,) ()TF x p W x A  = + (2)

Here, | | | |S SW  is the transition matrix representing internal dynamics between phase

states within each queue, ()x is a nonlinear function representing the load-dependent

service rate, and
| | | |S CA  defines the routing of incoming requests based on the

probabilistic routing matrix p. For each queue q, the state evolution is governed by a local

set of differential equations, written as:

 ()
q T

q q q q

dx
W x A

dt
 = + (3)

where
| | | |q qS S

qW


 , and q is the arrival rate for queue q. The service time for each

request is modeled using a phase-type distribution. The mean-field approximation

enables efficient computation of average queue lengths and request processing times

without simulating each request individually. However, due to its reliance on simplified

dynamics, the fluid model fails to accurately predict system behavior under dynamic and

nonlinear conditions, such as changing load conditions or interaction effects between

queues.

78

Extending the Fluid Model with Universal Differential Equations and

Neural Networks

To overcome the limitations of the fluid model, we extend it by introducing Universal

Differential Equations (UDEs), which embed a neural network into the differential

equation framework to capture unmodeled dynamics. The neural network, denoted

NN (, ,)x p  , learns the residuals between the predictions of the fluid model and actual

system behavior. The UDE-enhanced model is formulated as:

 (, ,) NN (, ,)
dx

F x p x p
dt

 = + (4)

where  represents the parameters of the neural network, which are optimized to

minimize the prediction error. The neural network NN (, ,)x p  is designed to capture

complex, nonlinear dependencies in the system that the fluid model cannot represent.

The architecture of NN consists of multiple hidden layers with non-linear activation

functions, such as ReLU or ELU:

 (1) () () ()()l l l lh W h b+ = + (5)

where ()lh is the activation of the l-th layer, ()lW is the weight matrix for that layer, ()lb

is the bias vector, and  is the activation function (e.g., ReLU). The size of the neural

network is controlled to prevent overfitting, ensuring that the network captures only the

residual dynamics, which the fluid model fails to account for. The training of NN is

embedded within the differential equation solver, allowing for continuous learning of

system dynamics through the automatic differentiation of the hybrid UDE model. This

enables efficient optimization of the neural network within the context of the underlying

differential equations.

Training the Hybrid UDE Model

Training the hybrid UDE model involves solving the extended system of differential

equations while simultaneously optimizing the parameters  of the neural network. The

objective is to minimize the discrepancy between the predicted system behavior and the

observed data. The training loss ()CL  is based on the mean squared error (MSE)

between the predicted and observed class populations, defined as:

 ()
2

*

ˆ(, ,)

ˆ() (,)
C

C C C

p x D

L x p x


 


= − (6)

where * (,)Cx p is the predicted steady-state population for class C, and ˆ
Cx is the

observed population from the dataset D, which consists of system observations under

various load balancing configurations.

The neural network is trained using automatic differentiation (AD) to compute the

gradients of the loss function with respect to  . The gradients are propagated through

both the neural network and the differential equation solver using backpropagation

79

through time (BPTT). The ADAM optimizer is used for efficient gradient descent, with an

adaptive learning rate, momentum terms, and weight decay to prevent overfitting. The

update rule for the network parameters is given by:

 1

()C
t t

L 
  


+


= −


 (7)

where  is the learning rate, and
()CL 






 is the gradient of the loss function.

Analytical Formulation of System Metrics

In addition to modeling system dynamics, the hybrid UDE model provides an analytical

framework for deriving key performance metrics, such as queue lengths, response times,

and percentiles of response times. These metrics are critical for optimizing system

performance and managing resources. The mean request population in class c at time t,

denoted ()Cx t , is given by:

 () ()
C

C i

i S

x t x t


= (8)

where
CS is the set of phase states corresponding to class C, and ()ix t represents the

number of requests in phase state i. Similarly, the mean request population in queue q is:

 () ()
Q

Q i

i S

x t x t


= (9)

The response time percentiles are calculated by solving an additional ordinary differential

equation (ODE) that models the probability ()t of a request remaining in the system

after time t. The evolution of ()t is given by:

 (), (0)T

g

d
W D t A

dt


  = = (10)

where W is the transition matrix, gD is a diagonal matrix encoding queue dynamics, and

A defines the initial distribution of requests in the system. The response time

percentile  is obtained by solving this ODE until the condition:

0

() 1t dt


 = − (11)

is satisfied, where  is the desired percentile (e.g., 0.95 = for the 95th percentile).

Control and Optimization

The hybrid UDE model facilitates the optimization of control parameters, such as the load

balancing probabilities p, to minimize system costs while maintaining performance

guarantees. The cost function ()L p is designed to balance the trade-off between

maintaining low queue lengths and minimizing response time violations:

80

*

lim

*

((,)) if
()

(,) otherwiseT Q

C x p
L p

C x p

     



 
= 


 (12)

where *((,))x p  represents the predicted response time percentile, and * (,)Qx p

represents the predicted mean queue length at steady state. The coefficients C and
TC

represent the cost associated with violating the response time threshold
lim and

maintaining high queue lengths, respectively. To minimize the cost function, we use

gradient-based optimization, where the gradients of ()L p with respect to p are

computed via automatic differentiation:

()

()p

L p
L p

p


 =


 (13)

This allows for efficient real-time optimization of the load balancing strategy, ensuring

that the system operates within acceptable performance limits while minimizing resource

usage.

Experimental Setup

To evaluate the hybrid UDE+NN model’s performance, we set up a microservice-based

system simulation. The system consists of N microservices, each operating multiple

replicas (k replicas per service). Requests arrive according to a Poisson distribution with

varying rates (), and the requests are distributed among the replicas via a load

balancing mechanism, which uses probabilistic routing (p) to direct the requests to

specific service replicas. Each service replica is modeled using a multiclass processor-

sharing queue where each class represents a different type of request, and service times

follow a phase-type distribution.

Simulation and Data Collection

The microservice system is simulated for a variety of load conditions by varying the

request arrival rates  and adjusting the routing probabilities p for different replicas.

Data collection is done by recording:

- The average number of requests in each service class.

- The 95th percentile response time for the entire system.

- Queue lengths at steady state.

The simulation runs are structured as follows:

- Baseline Conditions: Simulations are first run under conditions similar to the ones used

to calibrate the fluid model.

- Stress Testing: The system is subsequently subjected to extreme or highly variable loads

to test the robustness of the hybrid model and evaluate how it performs beyond the

parameter range for which the fluid model is designed.

81

For each combination of  and p, data is collected for both training and validation

purposes. The training dataset consists of data under moderate load conditions, while the

testing dataset includes both moderate and high-load conditions to assess the model’s

ability to generalize.

Model Training and Evaluation

The hybrid UDE+NN model is trained using the data collected from the moderate load

scenarios. The neural network is tasked with learning the residual dynamics that the base

fluid model does not capture, particularly in conditions where the system experiences

non-linear behavior (e.g., during sudden changes in load). The model is trained using the

ADAM optimizer with a learning rate of 0.001 = and a batch size of 64.

To measure the effectiveness of the hybrid model, we evaluate its predictions against

both the base fluid model and ground truth data. The following metrics are used for

evaluation:

1. Mean Absolute Error (MAE) for queue length predictions:

 , ,

1

1
(,)

n

pred obs pred i obs i

i

MAE x x x x
n =

= − (14)

where predx represents the predicted queue length, and
obsx is the observed queue

length.

2. 95th Percentile Response Time (
0.95):

 ()0.95
0

min () 0.95
t

t t s ds = =∣ (15)

where ()t represents the probability of a request remaining in the system.

3. Error in load balancing predictions under dynamic load changes:

, ,

1

()
N

error pred i opt i

i

L p p p
=

= − (16)

where predp is the predicted optimal routing probability vector, and optp is the ground

truth optimal routing configuration.

82

Figure 1. Predicted queue lengths under varying load conditions (λ\lambdaλ) for the actual system, the base
fluid model, and the UDE+NN model

Results and Discussion

Queue Length Prediction: The hybrid UDE+NN model consistently outperforms the base

fluid model in predicting queue lengths across all tested scenarios. The Mean Absolute

Error (MAE) for queue length predictions in high-load scenarios was reduced by

approximately 35% when using the hybrid model compared to the base fluid model alone.

This significant improvement arises from the neural network’s ability to capture

nonlinearities and complex interactions between services that the base fluid model

cannot model effectively. Figure 1 presents the stacked area plot comparing the predicted

queue lengths under varying load conditions (λ\lambdaλ) for the actual system, the base

fluid model, and the UDE+NN model. As the load increases, the base fluid model's

accuracy drops, especially when operating beyond the calibration points. The UDE+NN

model, however, demonstrates improved stability and prediction accuracy across the full

range of load conditions, effectively capturing the system dynamics under variable loads.

Queue Length Distribution: The box plot shown in Figure 2 compares the distribution of

queue length predictions across different models, including the actual system, the base

fluid model, and the UDE+NN model. The UDE+NN model shows a tighter distribution and

reduced variance compared to the base fluid model, highlighting its ability to provide

more accurate and reliable predictions, especially in high-load scenarios. This visual

representation emphasizes the UDE+NN model's improved generalization capability

across different load conditions. Response Time Percentile Prediction: Accurately

predicting the 95th percentile response time (ϕ 0.95) is critical for meeting service-level

agreements (SLAs). The base fluid model's assumption of uniform processing times results

in inaccurate predictions, particularly under high-load conditions where variability in

request processing times increases.

83

Figure 2. Comparison of the distribution of predicted queue lengths across different models, including the
actual system, base fluid model, and UDE+NN model

As shown in Figure 3, the line plot with error bars compares the predicted and actual 95th

percentile response times across varying load conditions (λ\lambdaλ) for the actual

system, the base fluid model, and the UDE+NN model. The hybrid model demonstrates

significantly improved accuracy, with predictions within 5% of observed values in 85% of

test cases, whereas the base model deviates by as much as 20% under high-load

conditions. The error bars capture the variability, illustrating the UDE+NN model’s

robustness and consistency in accurately predicting response times even under dynamic

loads.

Load Balancing Optimization: In addition to performance predictions, the hybrid model

was applied to optimize load balancing strategies by adjusting the routing probabilities

ppp based on system conditions. Using gradient-based methods, the hybrid model was

able to minimize a cost function that penalized high queue lengths and response time

violations, as described in Section 3.5. During stress-testing scenarios involving rapid

changes in λ\lambdaλ, the UDE+NN model suggested optimal routing adjustments,

resulting in a 15% reduction in overall system cost compared to the base model's

recommendations. Moreover, the hybrid model converged to optimal load balancing

configurations more quickly and with fewer iterations than the base model. This highlights

the advantage of the UDE+NN model in optimizing system control in real time, particularly

in high-variance conditions.

84

Figure 3. 95th percentile response times across varying load conditions (λ\lambdaλ) for the actual system, the
base fluid model, and the UDE+NN model

Conclusion and Future Work:

This paper introduced a novel hybrid modeling approach that integrates Universal

Differential Equations (UDEs) with Neural Networks (NNs) to enhance the performance

prediction of microservice architectures. The proposed UDE+NN model addresses key

limitations of traditional fluid models, particularly in their ability to capture the complex,

nonlinear, and dynamic behavior of microservice-based systems. While fluid models offer

an efficient and interpretable baseline for modeling steady-state performance, they often

fail to generalize under dynamic load conditions and require frequent recalibration to

maintain accuracy. The hybrid UDE+NN model overcomes these issues by embedding

neural networks within the differential equation framework, enabling the model to learn

residual dynamics and unmodeled behaviors that fluid models alone cannot represent.

Through our experimental results, we demonstrated that the hybrid model significantly

outperforms the base fluid model across a range of load conditions, especially in high-

load and variable traffic scenarios. The UDE+NN model consistently provided more

accurate predictions of key performance metrics, including queue lengths and 95th

percentile response times, which are critical for maintaining service-level agreements

(SLAs) in microservice-based systems. Furthermore, the hybrid model improved the

efficiency of load balancing optimization by predicting optimal routing configurations

with greater accuracy, resulting in reduced system costs and improved resource

utilization.

One of the key strengths of the UDE+NN approach lies in its adaptability to real-time

system dynamics. The ability of the neural network to learn and adapt to changing

conditions reduces the need for frequent retraining, making the model more suitable for

use in cloud environments where system loads and configurations can change rapidly.

The model’s ability to generalize across different operating conditions without requiring

85

recalibration is particularly valuable in distributed systems where scalability and resilience

are paramount.

REFERENCE

[1] C. T. Joseph and K. Chandrasekaran, “Straddling the crevasse: A review of
microservice software architecture foundations and recent advancements,” Softw.
Pract. Exp., vol. 49, no. 10, pp. 1448–1484, Oct. 2019.

[2] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Microservice based
architecture: Towards high-availability for stateful applications with kubernetes,” in
2019 IEEE 19th International Conference on Software Quality, Reliability and Security
(QRS), Sofia, Bulgaria, 2019.

[3] L. De Lauretis, “From monolithic architecture to microservices architecture,” in 2019
IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), Berlin, Germany, 2019.

[4] A. Sill, “The Design and Architecture of Microservices,” IEEE Cloud Comput., vol. 3, no.
5, pp. 76–80, Sep. 2016.

[5] C. Surianarayanan, G. Ganapathy, and P. Raj, “Patterns for Microservices-Centric
Applications,” in Essentials of Microservices Architecture, Taylor & Francis, 2019, pp.
221–250.

[6] B. Götz, D. Schel, D. Bauer, C. Henkel, P. Einberger, and T. Bauernhansl, “Challenges
of production microservices,” Procedia CIRP, vol. 67, pp. 167–172, 2018.

[7] W. Everling, “First concepts and relations of Queuing Theory,” in Exercises in
Computer Systems Analysis, Berlin, Heidelberg: Springer Berlin Heidelberg, 1975, pp.
35–45.

[8] M. Gribaudo, M. Iacono, and D. Manini, “Performance evaluation of replication
policies in microservice based architectures,” Electron. Notes Theor. Comput. Sci., vol.
337, pp. 45–65, May 2018.

[9] A. Christoforou, L. Odysseos, and A. Andreou, “Migration of software components to
microservices: Matching and synthesis,” in Proceedings of the 14th International
Conference on Evaluation of Novel Approaches to Software Engineering, Heraklion,
Crete, Greece, 2019.

[10] R. Oberhauser and S. Stigler, “Microflows: Leveraging process mining and an
automated constraint recommender for microflow modeling,” in Lecture Notes in
Business Information Processing, Cham: Springer International Publishing, 2018, pp.
25–48.

[11] M. Raissi, “Deep hidden physics models: Deep learning of nonlinear partial
differential equations,” arXiv [stat.ML], 20-Jan-2018.

[12] N. Yadav, A. Yadav, and M. Kumar, “Overview of differential equations,” in An
Introduction to Neural Network Methods for Differential Equations, Dordrecht:
Springer Netherlands, 2015, pp. 1–12.

[13] N. Yadav, A. Yadav, and M. Kumar, “Neural network methods for solving differential
equations,” in An Introduction to Neural Network Methods for Differential Equations,
Dordrecht: Springer Netherlands, 2015, pp. 43–100.

[14] N. Yadav, A. Yadav, and M. Kumar, “History of neural networks,” in An Introduction
to Neural Network Methods for Differential Equations, Dordrecht: Springer
Netherlands, 2015, pp. 13–15.

86

[15] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Netw., vol. 2, no. 5, pp. 359–366, Jan. 1989.

[16] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.
436–444, May 2015.

[17] J. E. Nápoles Valdez, “Differential equations: Between the theoretical sublimation
and the practical universalization,” Acta Sci., vol. 21, no. 1, Mar. 2019.

[18] S. Üsküplü Altınbaşak and M. Demiralp, “Solutions to linear matrix ordinary
differential equations via minimal, regular, and excessive space extension based
universalization,” J. Math. Chem., vol. 48, no. 2, pp. 266–286, Aug. 2010.

