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Abstract 
Microservice architectures have become a cornerstone of modern cloud-based systems due 

to their scalability, modularity, and flexibility. However, managing the performance of 

such distributed systems in dynamic environments presents significant challenges. 

Traditional performance models, such as fluid models based on queuing theory, often fail 

to capture the nonlinear and dynamic interactions between microservices, especially under 

fluctuating load conditions. In this paper, we propose a hybrid modeling approach that 

integrates Universal Differential Equations (UDEs) with Neural Networks (NNs) to 

enhance the accuracy and flexibility of microservice performance predictions. The 

UDE+NN model combines the interpretability and efficiency of fluid models with the 

adaptive learning capabilities of neural networks, capturing unmodeled system dynamics 

and improving the prediction of key performance metrics, including queue lengths and 

response times. Through extensive simulations, we demonstrate that the hybrid model 

significantly outperforms traditional fluid models, particularly in high-load and variable-

traffic scenarios. Furthermore, the UDE+NN model enables real-time optimization of load 

balancing strategies, leading to better resource allocation and reduced operational costs. 

This work provides a robust framework for real-time performance management of 

microservice architectures, offering enhanced adaptability and predictive accuracy. 

Keywords: Microservice architectures, Universal Differential Equations, Neural Networks, 

Fluid models, Performance prediction 

Introduction  
Microservices have emerged as a dominant architectural paradigm for cloud-based 

applications due to their modularity, scalability, and ability to support continuous delivery 

and deployment. Unlike traditional monolithic architectures, where all services are tightly 

coupled, microservice architectures consist of small, independently deployable services 

that communicate with each other over a network. Each microservice is responsible for a 

specific piece of functionality, which allows for flexibility in development, scaling, and 

maintenance [1]–[3]. This decentralized nature enables organizations to develop more 

resilient and scalable systems, often with the capability to handle millions of requests per 

second.  

Despite these benefits, microservices introduce unique challenges in managing 

performance, especially in dynamic environments. The distributed nature of 

microservices, combined with their independence, leads to complex interactions 

between services. These interactions are often nonlinear, making it difficult to predict 

system behavior under varying loads. Load fluctuations, service failures, and the need for 

elastic scaling in response to demand are just a few of the dynamic factors that make 
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performance modeling for microservices a non-trivial problem. Effective management of 

these systems requires accurate prediction of performance metrics such as queue 

lengths, response times, and resource utilization, which are critical for maintaining 

service-level agreements (SLAs) and ensuring the overall reliability of the system [4]–[6]. 

Limitations of Existing Models 

Traditionally, queuing theory and fluid models have been employed to predict the 

performance of distributed systems, including microservice architectures. Fluid models 

simplify the system dynamics by approximating discrete events, such as request arrivals 

and processing times, with continuous flows. These models are particularly effective for 

calculating steady-state performance metrics, such as average response times and queue 

lengths, under stable conditions. However, they come with several limitations: 

1. Steady-State Assumption: Fluid models often assume that the system operates 

under steady-state conditions, where arrival rates and service times are constant 

over time. In real-world microservice architectures, however, traffic patterns are 

highly variable, with frequent changes in load and user demand. This variability 

makes fluid models less accurate in transient conditions. 

2. Simplified Dynamics: While fluid models can provide a reasonable approximation 

of system behavior under controlled conditions, they fail to capture the full 

complexity of modern microservice architectures. In particular, they do not 

account for the nonlinear interactions between services, nor do they consider 

dynamic resource allocation mechanisms such as autoscaling, which allows 

services to adjust their resource usage in real-time based on demand. 

3. Lack of Generalization: Due to their reliance on pre-defined system parameters, 

fluid models are not generalizable across different operating conditions. Frequent 

recalibration is required whenever system parameters, such as load distribution 

or routing policies, change. This limits the practicality of these models for real-

time performance management in highly dynamic systems. 

Given these limitations, there is a clear need for more adaptive models that can capture 

the residual dynamics and nonlinear interactions inherent in microservice-based systems, 

particularly under dynamic load conditions. The inability of traditional models to 

accurately predict system behavior in such environments motivates the exploration of 

hybrid approaches that leverage machine learning techniques. 

Proposed Approach 

To address the aforementioned challenges, we propose a hybrid modeling approach that 

combines Universal Differential Equations (UDEs) with Neural Networks (NNs) to enhance 

the performance modeling of microservice architectures. UDEs integrate neural networks 

directly into the differential equations that govern the system's behavior, enabling the 
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model to capture both known and unknown dynamics in the system. This hybrid model 

leverages the interpretability and efficiency of fluid models while incorporating the 

flexibility of neural networks to account for unmodeled dynamics and non-linear 

interactions. In this approach, the fluid model serves as the baseline, capturing the 

average behavior of the system under predefined conditions. The neural network, 

embedded within the differential equations, learns the residual dynamics—those aspects 

of system behavior that the fluid model cannot accurately predict. These include transient 

load spikes, non-linear interactions between microservices, and dynamic resource 

allocation strategies. By training the neural network to learn these residuals, the hybrid 

UDE+NN model can generalize across a wider range of operating conditions and provide 

more accurate performance predictions without requiring frequent recalibration. The key 

advantage of this approach is its ability to adapt to changing system conditions in real-

time, making it highly suitable for cloud-based microservice architectures. Additionally, 

the integration of neural networks into the differential equation framework allows for 

continuous learning of system dynamics, reducing the need for large amounts of labeled 

data and extensive retraining. 

Literature Review and Problem Definition: 

Microservices are becoming increasingly prevalent in cloud-based architectures due to 

their modularity, scalability, and flexibility. However, the distributed nature of 

microservices poses challenges in system management, especially when predicting and 

controlling performance under varying loads. Numerous studies have explored the use of 

queuing theory, fluid models, and neural networks to address performance bottlenecks 

and improve the efficiency of microservice systems. 

Traditional queuing models, such as those based on fluid approximations, have been 

widely used to analyze the performance of microservices. Everling (1975) laid the 

foundation for applying queuing theory to computer networks, providing a means to 

predict system performance metrics like response times and throughput [7].  Fluid models 

provide an analytical approach to predict system behavior by treating discrete request 

arrivals as continuous flows . These models are efficient for modeling the average system 

behavior under steady-state conditions. However, these models often fail to capture the 

transient and dynamic behavior inherent in real-world microservice architectures, where 

load fluctuations and non-linear interactions between services can lead to inaccurate 

predictions. While fluid models excel at providing baseline approximations, they often fall 

short when applied to complex, dynamic systems like microservices [8]–[10]. For 

example, fluid models assume that the system operates under steady-state conditions, 

making them less effective in capturing transient spikes or dips in traffic, which are 

common in microservice-based systems. 

Advancements in hybrid modeling approaches have introduced Universal Differential 

Equations (UDEs), which integrate neural networks with differential equations to model 

systems with both known and unknown dynamics [11]–[14]. This approach has been 

successfully applied to control problems, enabling better predictions in dynamic 

environments where system behavior evolves over time. Neural networks have been 
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widely applied in system modeling, especially in cases where traditional models fail to 

capture non-linear relationships or when labeled data is scarce. Hornik et al. (1989) 

demonstrated that neural networks can serve as universal approximators, meaning they 

can model any continuous function to a high degree of accuracy [15]. This property makes 

neural networks suitable for learning the residual dynamics in systems where fluid models 

provide only an incomplete representation. Studies by LeCun et al. (2015) further 

supported the use of neural networks in complex system modeling, particularly in areas 

like image recognition and system optimization [16]. 

Problem Definition 

Microservice performance modeling presents unique challenges due to the distributed 

and dynamic nature of these systems. Traditional queuing models, such as those based 

on fluid approximations, have been extensively used to model and predict system 

behaviors like average response times and queue lengths. These models simplify the 

system dynamics, assuming steady-state conditions and uniform load distributions. While 

fluid models can provide reasonable approximations under stable conditions, they often 

fail to capture the complexities of real-world microservice systems, where load conditions 

fluctuate, services interact in non-linear ways, and failures in one service can propagate 

throughout the system. For instance, in a typical microservice architecture, a load 

balancer distributes requests to different service replicas based on probabilistic routing 

policies.  

The problem, therefore, lies in the inability of traditional fluid models to account for 

unmodeled dynamics in microservice systems. Specifically, fluid models often fail to 

capture: 

1. Non-linear Load Interactions: Microservices interact in ways that can amplify or 

dampen performance issues. For instance, a spike in traffic to one service can 

indirectly affect the performance of other services due to shared resources or 

cascading failures. 

2. Dynamic Load Conditions: Microservices operate under variable loads, and 

performance metrics such as queue lengths and response times can change 

rapidly as request rates fluctuate. 

3. Residual Dynamics: Many system behaviors are not fully captured by fluid 

models, particularly under high-load conditions or during transient states (e.g., 

service recovery or scaling events). 

Proposed Solution 

To address these limitations, we propose a hybrid model that combines Universal 

Differential Equations (UDEs) with Neural Networks (NNs) to enhance microservice 

performance modeling. UDEs integrate neural networks directly into the differential 

equations that govern the system's behavior, allowing the model to learn the residual 
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dynamics that traditional fluid models cannot capture [17], [18]. By embedding NNs into 

the fluid model framework, we extend its predictive range, enabling the model to adapt 

to changing load conditions and interactions between services without frequent 

retraining. 

Methodology: 

We begin by modeling the microservice system as a multiclass processor-sharing queuing 

network, where each service replica (queue) handles different classes of requests. The 

model follows a mean-field approximation that captures the steady-state behavior of the 

system. In this context, each queue processes a mix of request types, and the system 

dynamically distributes requests across multiple queues through a load balancer that 

follows a probabilistic routing mechanism. 

Let | |( ) Sx t   represent the state of the system at time t, where |S|  is the total number 

of phase states across all queues. The state vector ( )x t  captures the average number of 

requests in each phase of the service. The system is governed by the following differential 

equation: 

 ( , , )
dx

F x p
dt

=  (1)   

where | |C  is the vector of arrival rates for each class of requests, and | | | |C Cp   is 

the probabilistic routing matrix, defining the probabilities of transitioning between 

different classes in the system. The function ( , , )F x p  is defined as: 

 ( , , ) ( )TF x p W x A  = +  (2)   

Here, | | | |S SW   is the transition matrix representing internal dynamics between phase 

states within each queue, ( )x  is a nonlinear function representing the load-dependent 

service rate, and 
| | | |S CA   defines the routing of incoming requests based on the 

probabilistic routing matrix p. For each queue q, the state evolution is governed by a local 

set of differential equations, written as: 

 ( )
q T

q q q q

dx
W x A

dt
 = +  (3)   

where 
| | | |q qS S

qW


 , and q  is the arrival rate for queue q. The service time for each 

request is modeled using a phase-type distribution. The mean-field approximation 

enables efficient computation of average queue lengths and request processing times 

without simulating each request individually. However, due to its reliance on simplified 

dynamics, the fluid model fails to accurately predict system behavior under dynamic and 

nonlinear conditions, such as changing load conditions or interaction effects between 

queues. 
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Extending the Fluid Model with Universal Differential Equations and 

Neural Networks 

To overcome the limitations of the fluid model, we extend it by introducing Universal 

Differential Equations (UDEs), which embed a neural network into the differential 

equation framework to capture unmodeled dynamics. The neural network, denoted 

NN ( , , )x p  , learns the residuals between the predictions of the fluid model and actual 

system behavior. The UDE-enhanced model is formulated as: 

 ( , , ) NN ( , , )
dx

F x p x p
dt

 = +  (4)   

where   represents the parameters of the neural network, which are optimized to 

minimize the prediction error. The neural network NN ( , , )x p   is designed to capture 

complex, nonlinear dependencies in the system that the fluid model cannot represent. 

The architecture of NN  consists of multiple hidden layers with non-linear activation 

functions, such as ReLU or ELU: 

 ( 1) ( ) ( ) ( )( )l l l lh W h b+ = +  (5)   

where ( )lh  is the activation of the l-th layer, ( )lW  is the weight matrix for that layer, ( )lb  

is the bias vector, and   is the activation function (e.g., ReLU). The size of the neural 

network is controlled to prevent overfitting, ensuring that the network captures only the 

residual dynamics, which the fluid model fails to account for. The training of NN  is 

embedded within the differential equation solver, allowing for continuous learning of 

system dynamics through the automatic differentiation of the hybrid UDE model. This 

enables efficient optimization of the neural network within the context of the underlying 

differential equations. 

Training the Hybrid UDE Model 

Training the hybrid UDE model involves solving the extended system of differential 

equations while simultaneously optimizing the parameters   of the neural network. The 

objective is to minimize the discrepancy between the predicted system behavior and the 

observed data. The training loss ( )CL   is based on the mean squared error (MSE) 

between the predicted and observed class populations, defined as: 

 ( )
2

*

ˆ( , , )

ˆ( ) ( , )
C

C C C

p x D

L x p x


 


= −  (6)   

where * ( , )Cx p  is the predicted steady-state population for class C, and ˆ
Cx  is the 

observed population from the dataset D, which consists of system observations under 

various load balancing configurations. 

The neural network is trained using automatic differentiation (AD) to compute the 

gradients of the loss function with respect to  . The gradients are propagated through 

both the neural network and the differential equation solver using backpropagation 
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through time (BPTT). The ADAM optimizer is used for efficient gradient descent, with an 

adaptive learning rate, momentum terms, and weight decay to prevent overfitting. The 

update rule for the network parameters is given by: 

 1

( )C
t t

L 
  


+


= −


 (7)   

where   is the learning rate, and 
( )CL 






 is the gradient of the loss function. 

Analytical Formulation of System Metrics 

In addition to modeling system dynamics, the hybrid UDE model provides an analytical 

framework for deriving key performance metrics, such as queue lengths, response times, 

and percentiles of response times. These metrics are critical for optimizing system 

performance and managing resources. The mean request population in class c at time t, 

denoted ( )Cx t , is given by: 

 ( ) ( )
C

C i

i S

x t x t


=  (8)   

where 
CS  is the set of phase states corresponding to class C, and ( )ix t  represents the 

number of requests in phase state i. Similarly, the mean request population in queue q is: 

 ( ) ( )
Q

Q i

i S

x t x t


=  (9)   

The response time percentiles are calculated by solving an additional ordinary differential 

equation (ODE) that models the probability ( )t  of a request remaining in the system 

after time t. The evolution of ( )t  is given by: 

 ( ), (0)T

g

d
W D t A

dt


  = =  (10)   

where W is the transition matrix, gD  is a diagonal matrix encoding queue dynamics, and 

A  defines the initial distribution of requests in the system. The response time 

percentile   is obtained by solving this ODE until the condition: 

 
0

( ) 1t dt


 = −  (11)   

is satisfied, where   is the desired percentile (e.g., 0.95 =  for the 95th percentile). 

Control and Optimization 

The hybrid UDE model facilitates the optimization of control parameters, such as the load 

balancing probabilities p, to minimize system costs while maintaining performance 

guarantees. The cost function ( )L p  is designed to balance the trade-off between 

maintaining low queue lengths and minimizing response time violations: 
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*

lim

*

( ( , )) if 
( )

( , ) otherwiseT Q

C x p
L p

C x p

     



 
= 


 (12)   

where *( ( , ))x p   represents the predicted response time percentile, and * ( , )Qx p  

represents the predicted mean queue length at steady state. The coefficients C  and 
TC  

represent the cost associated with violating the response time  threshold 
lim  and 

maintaining high queue lengths, respectively. To minimize the cost function, we use 

gradient-based optimization, where the gradients of ( )L p  with respect to p are 

computed via automatic differentiation: 

 
( )

( )p

L p
L p

p


 =


 (13)   

This allows for efficient real-time optimization of the load balancing strategy, ensuring 

that the system operates within acceptable performance limits while minimizing resource 

usage. 

Experimental Setup 

To evaluate the hybrid UDE+NN model’s performance, we set up a microservice-based 

system simulation. The system consists of N microservices, each operating multiple 

replicas (k replicas per service). Requests arrive according to a Poisson distribution with 

varying rates ( ), and the requests are distributed among the replicas via a load 

balancing mechanism, which uses probabilistic routing (p) to direct the requests to 

specific service replicas. Each service replica is modeled using a multiclass processor-

sharing queue where each class represents a different type of request, and service times 

follow a phase-type distribution. 

Simulation and Data Collection 

The microservice system is simulated for a variety of load conditions by varying the 

request arrival rates   and adjusting the routing probabilities p for different replicas. 

Data collection is done by recording: 

- The average number of requests in each service class. 

- The 95th percentile response time for the entire system. 

- Queue lengths at steady state. 

The simulation runs are structured as follows: 

- Baseline Conditions: Simulations are first run under conditions similar to the ones used 

to calibrate the fluid model. 

- Stress Testing: The system is subsequently subjected to extreme or highly variable loads 

to test the robustness of the hybrid model and evaluate how it performs beyond the 

parameter range for which the fluid model is designed. 
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For each combination of   and p, data is collected for both training and validation 

purposes. The training dataset consists of data under moderate load conditions, while the 

testing dataset includes both moderate and high-load conditions to assess the model’s 

ability to generalize. 

Model Training and Evaluation 

The hybrid UDE+NN model is trained using the data collected from the moderate load 

scenarios. The neural network is tasked with learning the residual dynamics that the base 

fluid model does not capture, particularly in conditions where the system experiences 

non-linear behavior (e.g., during sudden changes in load). The model is trained using the 

ADAM optimizer with a learning rate of 0.001 =  and a batch size of 64. 

To measure the effectiveness of the hybrid model, we evaluate its predictions against 

both the base fluid model and ground truth data. The following metrics are used for 

evaluation: 

1. Mean Absolute Error (MAE) for queue length predictions: 

 , ,

1

1
( , )

n

pred obs pred i obs i

i

MAE x x x x
n =

= −  (14)   

where predx  represents the predicted queue length, and 
obsx  is the observed queue 

length. 

2. 95th Percentile Response Time (
0.95 ): 

 ( )0.95
0

min ( ) 0.95
t

t t s ds = =∣  (15)   

where ( )t  represents the probability of a request remaining in the system. 

3. Error in load balancing predictions under dynamic load changes: 

, ,

1

( )
N

error pred i opt i

i

L p p p
=

= −  (16)   

where predp  is the predicted optimal routing probability vector, and optp  is the ground 

truth optimal routing configuration. 
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Figure 1. Predicted queue lengths under varying load conditions (λ\lambdaλ) for the actual system, the base 
fluid model, and the UDE+NN model 

Results and Discussion 

Queue Length Prediction: The hybrid UDE+NN model consistently outperforms the base 

fluid model in predicting queue lengths across all tested scenarios. The Mean Absolute 

Error (MAE) for queue length predictions in high-load scenarios was reduced by 

approximately 35% when using the hybrid model compared to the base fluid model alone. 

This significant improvement arises from the neural network’s ability to capture 

nonlinearities and complex interactions between services that the base fluid model 

cannot model effectively. Figure 1 presents the stacked area plot comparing the predicted 

queue lengths under varying load conditions (λ\lambdaλ) for the actual system, the base 

fluid model, and the UDE+NN model. As the load increases, the base fluid model's 

accuracy drops, especially when operating beyond the calibration points. The UDE+NN 

model, however, demonstrates improved stability and prediction accuracy across the full 

range of load conditions, effectively capturing the system dynamics under variable loads. 

Queue Length Distribution: The box plot shown in Figure 2 compares the distribution of 

queue length predictions across different models, including the actual system, the base 

fluid model, and the UDE+NN model. The UDE+NN model shows a tighter distribution and 

reduced variance compared to the base fluid model, highlighting its ability to provide 

more accurate and reliable predictions, especially in high-load scenarios. This visual 

representation emphasizes the UDE+NN model's improved generalization capability 

across different load conditions. Response Time Percentile Prediction: Accurately 

predicting the 95th percentile response time (ϕ 0.95) is critical for meeting service-level 

agreements (SLAs). The base fluid model's assumption of uniform processing times results 

in inaccurate predictions, particularly under high-load conditions where variability in 

request processing times increases. 
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Figure 2. Comparison of the distribution of predicted queue lengths across different models, including the 
actual system, base fluid model, and UDE+NN model 

As shown in Figure 3, the line plot with error bars compares the predicted and actual 95th 

percentile response times across varying load conditions (λ\lambdaλ) for the actual 

system, the base fluid model, and the UDE+NN model. The hybrid model demonstrates 

significantly improved accuracy, with predictions within 5% of observed values in 85% of 

test cases, whereas the base model deviates by as much as 20% under high-load 

conditions. The error bars capture the variability, illustrating the UDE+NN model’s 

robustness and consistency in accurately predicting response times even under dynamic 

loads. 

Load Balancing Optimization: In addition to performance predictions, the hybrid model 

was applied to optimize load balancing strategies by adjusting the routing probabilities 

ppp based on system conditions. Using gradient-based methods, the hybrid model was 

able to minimize a cost function that penalized high queue lengths and response time 

violations, as described in Section 3.5. During stress-testing scenarios involving rapid 

changes in λ\lambdaλ, the UDE+NN model suggested optimal routing adjustments, 

resulting in a 15% reduction in overall system cost compared to the base model's 

recommendations. Moreover, the hybrid model converged to optimal load balancing 

configurations more quickly and with fewer iterations than the base model. This highlights 

the advantage of the UDE+NN model in optimizing system control in real time, particularly 

in high-variance conditions. 
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Figure 3. 95th percentile response times across varying load conditions (λ\lambdaλ) for the actual system, the 
base fluid model, and the UDE+NN model 

Conclusion and Future Work: 

This paper introduced a novel hybrid modeling approach that integrates Universal 

Differential Equations (UDEs) with Neural Networks (NNs) to enhance the performance 

prediction of microservice architectures. The proposed UDE+NN model addresses key 

limitations of traditional fluid models, particularly in their ability to capture the complex, 

nonlinear, and dynamic behavior of microservice-based systems. While fluid models offer 

an efficient and interpretable baseline for modeling steady-state performance, they often 

fail to generalize under dynamic load conditions and require frequent recalibration to 

maintain accuracy. The hybrid UDE+NN model overcomes these issues by embedding 

neural networks within the differential equation framework, enabling the model to learn 

residual dynamics and unmodeled behaviors that fluid models alone cannot represent. 

Through our experimental results, we demonstrated that the hybrid model significantly 

outperforms the base fluid model across a range of load conditions, especially in high-

load and variable traffic scenarios. The UDE+NN model consistently provided more 

accurate predictions of key performance metrics, including queue lengths and 95th 

percentile response times, which are critical for maintaining service-level agreements 

(SLAs) in microservice-based systems. Furthermore, the hybrid model improved the 

efficiency of load balancing optimization by predicting optimal routing configurations 

with greater accuracy, resulting in reduced system costs and improved resource 

utilization. 

One of the key strengths of the UDE+NN approach lies in its adaptability to real-time 

system dynamics. The ability of the neural network to learn and adapt to changing 

conditions reduces the need for frequent retraining, making the model more suitable for 

use in cloud environments where system loads and configurations can change rapidly. 

The model’s ability to generalize across different operating conditions without requiring 
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recalibration is particularly valuable in distributed systems where scalability and resilience 

are paramount. 
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