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Abstract 
A fundamental aspect of cybersecurity is the detection of network intrusions, which pose 

a significant threat to the confidentiality and integrity of sensitive data. Network Intrusion 

Detection Systems (NIDS) are crucial tools for identifying and responding to unauthorized 

access or malicious activities within a network. This study investigates the efficacy of 

various machine learning algorithms for the classification of network traffic into normal 

and anomalous categories, employing the NSL-KDD dataset as a benchmark. We apply a 

rigorous preprocessing pipeline, including feature scaling and dimensionality reduction 

using Principal Component Analysis (PCA). The dataset contains 122 original features, 

which are reduced to 20 principal components while preserving meaningful information. 

To assess the performance of our models, we utilize seven different machine learning 

algorithms: Logistic Regression, K-Neighbors Classifier, Gaussian Naive Bayes (Gaussian 

NB), Linear Support Vector Classifier (Linear SVC), Decision Tree Classifier, Random 

Forest Classifier, and a variant of Random Forest with PCA. The following metrics are 

employed for evaluation: training and test accuracy, precision, and recall. Logistic 

Regression exhibits competitive results with a training accuracy of 86.97% and a test 

accuracy of 86.62%. K-Neighbor Classifier surpasses other models with training accuracy 

(98.05%) and test accuracy (97.94%). Gaussian NB, Linear SVC, Decision Tree Classifier, 

and Random Forest Classifier all exhibit good performance, consistently achieving high 

accuracy, precision, and recall scores. Incorporating PCA into the Random Forest 

Classifier provides a minimal reduction in performance, ensuring that dimensionality 

reduction does not compromise the model's effectiveness. The PCA Random Forest 

demonstrates a training accuracy of 98.99% and a test accuracy of 98.83%. Our findings 

suggest the suitability of these machine learning algorithms for intrusion detection tasks, 

with K-Neighbors Classifier standing out as the most robust performer in this study. 

Dimensionality reduction via PCA found streamlining computation without a significant 

sacrifice in model accuracy. This came at the expense of a slight reduction in recall, 

indicating a trade-off between precision and sensitivity to positive instances. The Random 

Forest analysis identified login attempts as the most crucial feature for network 

classification in intrusion detection, followed by the rate of contacting different destination 

hosts for the same service. Moreover, according to the findings of this study, Guest vs. 

non-guest logins, data volume transfer, service type, and service rate variations were also 

vital factors for accurate network traffic classification. 
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Introduction  
An Intrusion Detection System (IDS) is a crucial component within network security 

infrastructure designed to scrutinize and monitor internet traffic with the primary objective 

of identifying and preventing unauthorized access or malicious activities [1], [2]. IDSs are 

employed to safeguard networks from a wide spectrum of security threats, including but 

not limited to, unauthorized access attempts, malware intrusions, and denial-of-service 

attacks. One of the distinguishing features of IDSs is their ability to not only detect potential 

threats but also to take proactive measures, such as blocking traffic originating from 

unverified or suspicious IP addresses. This capability is instrumental in mitigating security 

breaches promptly [3], [4]. 

In recent years, there has been a significant surge in the frequency and complexity of 

network attacks, necessitating the enhancement and refinement of IDS technology. These 

attacks encompass a wide range of tactics, from stealthy intrusion attempts to sophisticated 

malware propagation techniques. Consequently, IDSs have evolved to incorporate 

advanced algorithms and machine learning models, enabling them to detect subtle 

anomalies and patterns indicative of a security breach. Additionally, IDSs now operate in 

real-time, continuously analyzing network traffic to promptly identify and respond to 

emerging threats, thereby reducing the potential for damage and data loss [5]. 

The escalation in network attacks underscores the critical importance of IDSs in today's 

cybersecurity landscape. Organizations must invest in robust and adaptable IDS solutions 

that can adapt to evolving threats. Moreover, the collaboration between IDSs and other 

security measures, such as firewalls and intrusion prevention systems (IPS), is essential to 

create a comprehensive defense strategy. As the threat landscape continues to evolve, IDS 

technology must remain at the forefront of network security, continuously evolving to meet 

the challenges posed by sophisticated and relentless adversaries. 

 

Figure 1. challenges of modern network security 
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The proliferation of hacker probes and malicious attacks targeting computer networks 

underscores the growing urgency of effective network security measures. One of the key 

challenges in this context lies in the differentiation between anomalous network activity 

and the norm, a task that is not only arduous but also time-consuming. To discern potential 

threats, human analysts are often required to sift through extensive volumes of network 

data, seeking out irregular sequences of network connections [6], [7]. 

The process of distinguishing between legitimate network traffic and potentially malicious 

activity is indeed a formidable challenge. This complexity arises from the myriad tactics 

employed by hackers, who continually adapt and refine their techniques to evade detection. 

As a result, network security analysts are burdened with the responsibility of meticulously 

examining network logs and data, a task that demands a deep understanding of network 

protocols and patterns. 

Efforts to streamline and enhance this process have led to the development of advanced 

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS). These systems 

leverage sophisticated algorithms, machine learning, and pattern recognition techniques to 

automate the detection of anomalous behavior within network traffic. By doing so, they 

alleviate the burden on human analysts, allowing them to focus on investigating and 

responding to identified threats rather than exhaustively combing through data. 

The challenge of network security is compounded by three significant limitations, each of 

which plays a pivotal role in exacerbating this issue. Firstly, the exponential growth in the 

volume of network data presents a formidable hurdle that is expected to persist. This surge 

in data can be primarily attributed to the increasing levels of connectivity, the widespread 

adoption of Internet of Things (IoT) devices, and the extensive reliance on cloud-based 

services [8], [9]. Addressing this burgeoning data volume necessitates the development of 

techniques capable of swiftly, efficiently, and effectively analyzing this data to identify 

potential security threats. 

The second limitation stems from the demand for in-depth monitoring and granularity to 

enhance the accuracy and effectiveness of Network Intrusion Detection Systems (NIDS). 

To achieve improved threat detection, NIDS analysis must transition from abstract and 

high-level observations to a more detailed and contextually-aware approach. This entails 

the ability to attribute behavioral changes within the network to specific elements, such as 

individual users, distinct operating system versions, or particular network protocols. 

Achieving this level of granularity is essential for accurately pinpointing the source and 

nature of potential security breaches [10]–[12]. 

The third limitation pertains to the sheer diversity of network threats and attack vectors. 

The evolving landscape of cyber threats encompasses a multitude of techniques and attack 

methodologies. Consequently, security systems must contend with a vast array of potential 

vulnerabilities and malicious activities. This necessitates ongoing research and 

development efforts to create adaptable and comprehensive security solutions capable of 

addressing the multitude of evolving threats [13], [14]. 
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There are two primary categories of NIDS, namely Signature-based NIDS (SNIDS) and 

Anomaly Detection-based NIDS (ADNIDS), each offering distinct approaches to threat 

detection [15]–[17]. 

In the case of SNIDS, the system operates by identifying attacks based on predefined rules 

that have been pre-installed specifically for known attack patterns. Network traffic is 

continuously compared against an updated database of attack signatures, allowing the 

system to promptly detect intrusions within the network traffic dataset. This approach is 

effective in identifying known threats but may struggle with detecting previously unseen 

attacks or evolving threats [18]–[20]. 

On the other hand, ADNIDS takes a different approach by classifying unknown or 

abnormal network behavior. It achieves this by meticulously analyzing the structures of 

normal network traffic behavior, forming a baseline. Any network traffic that deviates from 

this established pattern is flagged as a potential intrusion. This unique methodology equips 

ADNIDS with the capability to detect previously unknown or novel attacks, thereby 

enhancing the security posture of an organization. One of the notable advantages of 

ADNIDS is its capacity to predict and detect new and emerging threats, filling the gap left 

by SNIDS, which relies heavily on established attack signatures. This predictive capability 

is particularly valuable in the ever-evolving landscape of cyber threats where attackers 

constantly devise novel strategies to breach network defenses. As a result, ADNIDS has 

become an indispensable component of modern network security strategies, offering 

enhanced protection against a broader spectrum of threats, including those that have yet to 

be documented. 

Data and preprocessing  
The NSL-KDD dataset comprises records of internet traffic observed by a basic intrusion 

detection network, where, the traffic encountered by an actual IDS, with only traces of its 

presence remaining [21]. These records consist of 43 features per entry, where 41 features 

pertain to the characteristics of the observed traffic, and the remaining two serve as labels. 

These labels include information on whether the traffic is normal or indicative of an attack, 

as well as a severity score associated with the observed traffic input [22], [23]. 

Within this dataset, there are four distinct classes of attacks that can be identified and 

categorized. Firstly, there is the Denial of Service (DoS) category, which encompasses 

network connections associated with attacks aimed at overwhelming system resources, 

rendering them inaccessible to legitimate users [24], [25]. Second is the Probe category, 

which encompasses network connections related to probing or scanning activities, often 

initiated by attackers in an attempt to gather information about the target system or 

network. Thirdly, the Remote-to-Local (R2L) category includes network connections 

associated with remote-to-local attacks, wherein unauthorized attempts are made to access 

a system or network remotely, typically by exploiting vulnerabilities to gain access. Lastly, 

the User-to-Root (U2R) category represents attacks where individuals with limited 

privileges on a system attempt to escalate their privileges to achieve superuser or root 

access. 
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Table 1. Categories in NSL-KDD dataset 

Category Description 

Normal This category represents normal network traffic or connections 

that are not associated with any intrusion or malicious activity. 

Denial-of-Service 

(DoS) 

This category includes network connections that are part of 

denial-of-service attacks, where an attacker overwhelms a system 

or network resource to make it unavailable to users [26]. 

Probe The Probe category encompasses network connections that 

involve probing or scanning activities, such as reconnaissance 

attempts by attackers to gather information about the target 

system or network [27]. 

Remote-to-Local 

(R2L) 

The R2L category includes network connections related to 

remote-to-local attacks. These attacks involve unauthorized 

attempts to access a system or network remotely, typically 

exploiting vulnerabilities to gain access [28]. 

User-to-Root 

(U2R) 

The U2R category represents user-to-root attacks, where an 

attacker with limited privileges on a system attempts to escalate 

their privileges to gain superuser or root access. 

 

The NSL-KDD dataset represents a significant improvement over the original KDD'99 

dataset in several key aspects. First and foremost, it addresses the issue of redundancy 

present in the training set, ensuring that classifiers are not skewed toward more frequently 

occurring records. By eliminating redundant entries, the dataset promotes fairness and 

accuracy in the evaluation of machine learning algorithms for intrusion detection. 

Furthermore, the NSL-KDD dataset eliminates duplicate records in the proposed test sets, 

eliminating bias that could arise from methods with superior detection rates on common 

records. This adjustment enhances the objectivity and reliability of performance 

assessments for various learning algorithms [29]. 

Another enhancement in the NSL-KDD dataset is the careful selection of records from 

different difficulty levels, proportionate to their representation in the original KDD data 

set. This approach widens the range of classification rates achieved by different machine 

learning methods, facilitating a more precise evaluation of diverse learning techniques and 

their efficacy in intrusion detection. 

Additionally, the NSL-KDD dataset ensures that the number of records in both the training 

and test sets remains reasonable. This eliminates the need for random sampling of a smaller 

subset for experiments, ensuring consistent and comparable evaluation results across 

different research endeavors. These improvements collectively address the critical 

shortcomings of the original KDD dataset, particularly the problem of bias toward frequent 

records, and enhance the dataset's suitability for robust intrusion detection research [30]. 

In the data preprocessing phase, a binary encoding scheme was applied to the 'outcome' 

column of the dataset. For rows where the 'outcome' is labeled as "normal," a value of 0 

was assigned, indicating a normal network activity. Conversely, for rows where the 

'outcome' deviates from "normal" and represents an anomaly or intrusion, a value of 1 was 

assigned. This encoding simplifies the classification task, allowing for the clear 

differentiation between normal and anomalous network behaviors 



17 
 

We applied Robust Scaler to transform the dataset.  Robust Scaler operates by first 

eliminating the median value from the dataset, which effectively centers the data around 

zero. This step is crucial in mitigating the influence of outliers on subsequent analysis. 

Subsequently, Robust Scaler scales the data based on the interquartile range (IQR), which 

is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). 

This scaling procedure ensures that the data is more resistant to the impact of extreme 

values, making it particularly well-suited for datasets with outliers. By using the IQR for 

scaling, Robust Scaler effectively transforms the data into a more standardized form, 

contributing to improved model performance and reliability in various machine learning 

applications. 

Methods 
To evaluate the effectiveness of our models, we employ seven different machine learning 

algorithms: Logistic Regression, K-Neighbors Classifier, Gaussian Naive Bayes (Gaussian 

NB), Linear Support Vector Classifier (Linear SVC), Decision Tree Classifier, Random 

Forest Classifier, and a modified version of Random Forest incorporating Principal 

Component Analysis (PCA). 

Logistic Regression is a widely used statistical model for binary classification tasks. It is a 

linear model that predicts the probability of a binary outcome based on one or more 

predictor variables. The key idea behind logistic regression is to model the log-odds of the 

probability of the positive class as a linear combination of the predictor variables. This is 

achieved through the logistic function, also known as the sigmoid function, which maps 

any real-valued number into the range [0, 1]. Logistic Regression is computationally 

efficient and relatively simple to implement, making it a popular choice for various 

applications, including spam detection, medical diagnosis, and credit risk assessment. 

However, it assumes a linear relationship between the predictors and the log-odds, which 

may not hold in all cases, and it is sensitive to outliers. 

The K-Neighbors Classifier is a non-parametric, instance-based machine learning 

algorithm used for both classification and regression tasks. In the context of classification, 

it predicts the class of a data point by considering the classes of its k-nearest neighbors in 

the training dataset. The choice of 'k' determines the level of smoothing and model 

complexity [31], [32]. Smaller values of 'k' result in more complex and potentially noisy 

decision boundaries, while larger values of 'k' result in smoother decision boundaries. K-

Neighbors Classifier is simple to understand and implement, and it can handle complex 

decision boundaries and non-linear relationships in the data. However, it can be sensitive 

to the choice of 'k' and is computationally expensive for large datasets since it requires 

calculating distances between the query point and all training data points. 

Gaussian Naive Bayes is a probabilistic classification algorithm based on Bayes' theorem. 

It assumes that the features are continuous and follow a Gaussian (normal) distribution. 

Despite its simplicity and the "naive" assumption that features are conditionally 

independent given the class label, Gaussian NB often performs surprisingly well in 

practice, especially when the independence assumption is reasonably satisfied. It is 

particularly suited for text classification tasks, such as spam email detection and sentiment 

analysis. Gaussian NB calculates the likelihood and prior probabilities from the training 

data and then uses Bayes' theorem to estimate the posterior probabilities of different class 
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labels for a given input. While Gaussian NB is computationally efficient and works well 

with high-dimensional data, it may not perform as well when the independence assumption 

is strongly violated or when dealing with categorical or discrete data, where other variants 

of Naive Bayes, such as Multinomial or Bernoulli NB, may be more appropriate [33], [34]. 

The Linear Support Vector Classifier, often referred to as Linear SVC, is a supervised 

machine learning algorithm used primarily for binary classification tasks. It belongs to the 

family of Support Vector Machines (SVMs) and is specifically designed for linearly 

separable datasets. Linear SVC works by finding the optimal hyperplane that best separates 

the two classes while maximizing the margin between them. This hyperplane is determined 

based on a subset of training data points called support vectors. Linear SVC is particularly 

effective when dealing with high-dimensional data and datasets with a large number of 

features. It can also be extended to multiclass classification using strategies like one-vs-all. 

However, Linear SVC may not perform well on datasets with complex, non-linear decision 

boundaries, for which kernelized SVMs or other non-linear models might be more suitable. 

The Decision Tree Classifier is a widely used machine learning algorithm for both 

classification and regression tasks. It creates a hierarchical structure resembling a tree to 

make decisions based on the input features. At each internal node of the tree, the algorithm 

selects the feature that best splits the data into subsets with the highest homogeneity, 

typically using measures like Gini impurity or entropy. The decision tree continues to split 

the data until it reaches a stopping criterion, such as a maximum tree depth or a minimum 

number of samples per leaf. Decision trees are interpretable, easy to visualize, and can 

handle both categorical and numerical features. However, they are prone to overfitting, 

especially when the tree is deep and complex. Techniques like pruning and using ensemble 

methods like Random Forest can mitigate overfitting issues [35]. 

The Random Forest Classifier is an ensemble learning method that combines multiple 

decision trees to improve the accuracy and robustness of the classification model. It 

operates by creating a collection of decision trees, each trained on a random subset of the 

training data and using random subsets of the features (bagging). The final prediction is 

made by aggregating the predictions of individual trees, typically by a majority vote for 

classification tasks. Random Forests are known for their ability to handle high-dimensional 

data, reduce overfitting, and provide feature importance rankings. They are less sensitive 

to hyperparameter tuning compared to individual decision trees and are robust to outliers 

and noisy data. Random Forests can handle both classification and regression problems 

effectively and have found applications in various domains, including image recognition, 

bioinformatics, and finance. However, they may not perform well on extremely imbalanced 

datasets, and their interpretability is lower compared to single decision trees. 

Dimensionality reduction is a fundamental technique in machine learning and data analysis 

that aims to reduce the number of features or dimensions in a dataset while preserving its 

essential information [36]. The primary motivation behind dimensionality reduction is to 

alleviate the curse of dimensionality, which can lead to increased computational 

complexity, overfitting, and difficulties in visualizing and interpreting data. 

Dimensionality reduction methods can broadly be categorized into two types: feature 

selection and feature extraction. Feature selection involves choosing a subset of the original 

features, while feature extraction creates new features that are combinations of the original 

ones [37]. 
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Principal Component Analysis, commonly referred to as PCA, is a widely used 

dimensionality reduction technique. PCA falls under the category of feature extraction and 

aims to transform the original data into a new set of uncorrelated variables called principal 

component [38], [39]s. These components are ordered by their variance, with the first 

principal component capturing the most variance in the data, the second capturing the 

second most, and so on. By selecting a subset of these principal components, one can 

effectively reduce the dimensionality of the data while retaining a significant portion of the 

information. 

PCA works by finding the orthogonal linear transformations of the original features that 

maximize the variance in the data. It has numerous applications, including data 

compression, noise reduction, and visualization. PCA is particularly useful in scenarios 

where multicollinearity exists among the original features, as it helps in decorrelating them 

[40], [41]. However, PCA assumes that the data is centered (i.e., it has zero mean), and it 

may not perform well when the relationship between variables is non-linear. In such cases, 

non-linear dimensionality reduction techniques like t-Distributed Stochastic Neighbor 

Embedding (t-SNE) or Isomap may be more appropriate. 

Results 
Logistic Regression achieved a training accuracy of 86.97% and a test accuracy of 86.62%. 

The precision values for training and testing were 82.81% and 82.57%, respectively, while 

the recall values were 90.86% for training and 90.61% for testing. These results suggest 

that the Logistic Regression model has a good balance between accuracy and precision, 

with high recall indicating its ability to correctly identify positive instances. 

 

Table 2. Evaluation of the models  

Methods/Matrices Training 

Accuracy 

Test 

Accuracy 

Training 

Precision 

Test 

Precision 

Training 

Recall 

Test 

Recall 

Logistic Regression 86.97 86.62 82.81 82.57 90.86 90.61 

KNeighbors 

Classifier 

98.05 97.94 98.23 98.06 97.73 97.67 

Gaussian NB 90.8 90.61 91.63 91.53 88.48 88.3 

Linear SVC  96.15 95.95 95.25 94.91 96.68 96.65 

Decision Tree 

Classifier 

98.99 98.87 99 98.85 98.99 98.87 

Random Forest 

Classifier 

98.99 98.89 98.99 98.94 98.99 98.82 

PCA Random Forest 98.99 98.83 98.99 98.93 98.99 98.7 

 

 

In contrast, the KNeighbors Classifier demonstrated superior performance with a training 

accuracy of 98.05% and a test accuracy of 97.94%. It exhibited high precision for both 

training and testing, with values of 98.23% and 98.06%, respectively. The recall values 

were also strong, at 97.73% for training and 97.67% for testing. These results highlight the 

KNeighbors Classifier's capability to accurately classify instances, particularly evident in 

its high precision and recall rates. 
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The Gaussian Naive Bayes (NB) model achieved a training accuracy of 90.80% and a test 

accuracy of 90.61%. It demonstrated relatively balanced precision values, with 91.63% for 

training and 91.53% for testing. However, its recall values were slightly lower, with 

88.48% for training and 88.30% for testing. This suggests that the Gaussian NB model is 

robust but may not perform as well as the KNeighbors Classifier in identifying positive 

instances. 

Figure 2. Decision tree 

 

 

The Linear SVC exhibited a relatively high training accuracy of 96.15%, demonstrating its 

ability to fit the training data well. The test accuracy of 95.95% indicates that the model 

generalizes effectively to unseen data. In terms of precision, the training and test precision 

scores of 95.25% and 94.91%, respectively, reflect the model's ability to make accurate 

positive predictions. The recall scores, both in training (96.68%) and testing (96.65%), 

highlight the model's capability to identify a substantial proportion of true positive 

instances while maintaining a good balance with precision. 

Decision Tree model achieved good results with a training accuracy of 98.99% and a test 

accuracy of 98.87%, demonstrating remarkable performance in capturing the underlying 

patterns in the training and test datasets. The precision scores, both in training (99.00%) 

and testing (98.85%), indicate that the model excels in making precise positive predictions. 

The recall scores, identical in both training and testing at 98.99%, underscore the model's 

proficiency in identifying true positive instances without compromising precision. 

Figure 3. Feature importance random forest.  
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The Random Forest Classifier also delivered strong performance with a training accuracy 

of 98.99% and a test accuracy of 98.89%. Its precision scores, in both training (98.99%) 

and testing (98.94%), demonstrate a high level of accuracy in classifying positive instances. 

While the training recall remained at 98.99%, the test recall slightly decreased to 98.82%, 

indicating a slight trade-off between recall and precision on the test dataset. 

The PCA Random Forest model exhibited commendable results with a training accuracy 

of 98.99% and a test accuracy of 98.83%. It maintained high precision in both training 

(98.99%) and testing (98.93%), indicating its ability to make accurate positive predictions. 

The recall scores, while strong in both training (98.99%) and testing (98.70%). 

PCA appeared to enhance precision, as evidenced by high precision scores in both training 

and testing. However, it also introduced a slight trade-off between precision and recall on 

the test dataset, as the recall value decreased slightly. This suggests that PCA led to a more 

precise but somewhat less sensitive model when identifying positive instances. 

On the other hand, the PCA Random Forest model exhibited commendable results with 

high training and testing accuracy and maintained high precision values, similar to the non-

PCA Random Forest model. However, the impact of PCA was more pronounced in terms 

of recall. The recall scores, while still strong, suggested a slightly greater trade-off between 

recall and precision compared to the non-PCA Random Forest model. This indicates that 

PCA reduced the model's sensitivity to positive instances to some extent. 
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Figure 4. (counter-clockwise) Logistic regression, KNN, Gaussian NB, and Linear 

SVC 

  

  

The result obtained from feature importance analysis using the Random Forest algorithm 

provides valuable insights into the significance of different features in a dataset, 

particularly in the context of intrusion detection or any other classification task. In this 

case, it's intriguing to observe that the 'is_host_login' feature emerges as the most important 

one. This suggests that whether a login attempt is made using the host's account or not 

carries substantial weight in determining the outcome of the classification. This could be 

indicative of the system's vulnerability to insider attacks, making it a crucial factor to 

consider when building an intrusion detection model. 

Following 'is_host_login,' the 'srv_diff_host_rate' feature is ranked second in importance. 

This ranking implies that the rate at which different destination hosts are contacted for the 

same service within a short time frame is a key determinant in classifying network 

connections. High values in this feature could signify potential scanning or probing 

activities, which are common precursors to various network attacks. Thus, it underlines the 



23 
 

significance of monitoring and analyzing such rates in network traffic for effective 

intrusion detection. 

The third-ranking feature, 'is_guest_login,' adds another layer of context to the analysis. Its 

high importance suggests that distinguishing between guest and non-guest logins is critical 

for understanding network behavior. Guest logins often come with limited privileges, and 

detecting them accurately can help identify potential vulnerabilities or unauthorized access 

attempts within a network. 

Table 3. Important Features 

Feature Name Definition 

is_host_login This binary feature indicates whether the login attempt was 

made using the host's account or not. 

srv_diff_host_rate This feature represents the rate of different destination hosts 

that were contacted for the same service as the current 

connection in the past two seconds. 

is_guest_login This binary feature indicates whether the login attempt was 

made as a guest or not. 

dst_bytes This feature represents the number of data bytes sent by the 

destination host during the connection. 

 

'Dst_bytes,' ranked fourth, measures the volume of data sent by the destination host during 

a connection. Its importance underscores the role of data transfer in characterizing network 

connections. Unusually high or low data transfer volumes can be indicative of different 

network activities, including potentially malicious ones such as data exfiltration or denial 

of service attacks. The importance of the 'service' feature is also found to be significant. It 

implies that the type of service being accessed plays a significant role in determining the 

nature of a network connection. Different services have varying levels of security 

requirements and vulnerabilities, making this an essential feature for understanding and 

classifying network traffic accurately. The feature 'diff_srv_rate' ranks sixth in importance, 

indicating that variations in service rates are also relevant for intrusion detection. 

Differences in service rates can be indicative of suspicious or anomalous behavior and 

warrant closer scrutiny. 

Conclusion  
The field of cybersecurity faces ongoing challenges in safeguarding confidential data, 

necessitating precise methods for detecting network intrusions. This research focuses on 

the application of machine learning techniques in Network Intrusion Detection Systems 

(NIDS) and investigates the effectiveness of dimensionality reduction using Principal 

Component Analysis (PCA) to enhance the efficiency of intrusion detection models. Seven 

distinct machine learning algorithms are evaluated in this research: Logistic Regression, 

K-Neighbors Classifier, Gaussian Naive Bayes (Gaussian NB), Linear Support Vector 

Classifier (Linear SVC), Decision Tree Classifier, Random Forest Classifier, and a variant 

of Random Forest integrated with PCA. These models are assessed using key performance 

metrics, including training and test accuracy, precision, and recall. 

Logistic Regression demonstrated a good balance between accuracy and precision, with 

high recall rates, indicating its potential to correctly identify positive instances. On the 
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other hand, the KNeighbors Classifier exhibited superior performance with exceptional 

accuracy, precision, and recall values, showcasing its ability to accurately classify 

instances. 

The Gaussian Naive Bayes model, while robust, fell slightly behind the KNeighbors 

Classifier in identifying positive instances. The Linear SVC showed a strong capacity to 

fit the training data and generalize effectively to unseen data while maintaining a good 

balance between precision and recall. The Decision Tree model excelled in capturing 

underlying patterns and making precise positive predictions, with identical high recall 

scores in both training and testing. Similarly, the Random Forest Classifier displayed 

strong performance, albeit with a slight trade-off between recall and precision on the test 

dataset. The PCA Random Forest model, while commendable, exhibited a slightly greater 

trade-off between recall and precision compared to its non-PCA counterpart. while 

dimensionality reduction using PCA improved computational efficiency without 

significant performance degradation, it is essential to acknowledge that this reduction 

process may discard some nuanced features that could be valuable for detecting anomalies. 

The analysis using the Random Forest algorithm revealed the importance of various 

features in classifying network connections for intrusion detection. The most significant 

feature was related to login attempts, highlighting its crucial role in determining network 

behavior. Following that, the rate at which different destination hosts were contacted for 

the same service emerged as the second most important factor. The distinction between 

guest and non-guest logins also played a key role in classification. Additionally, the volume 

of data transferred during a connection, the type of service accessed, and variations in 

service rates can be essential factors in understanding and classifying network traffic in 

intrusion detection systems. 
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