
12

Anomaly Detection in Network Intrusion

Detection Systems Using Machine

Learning and Dimensionality Reduction
Olaolu Kayode-Ajala
Independent Researcher

Abstract
A fundamental aspect of cybersecurity is the detection of network intrusions, which pose

a significant threat to the confidentiality and integrity of sensitive data. Network Intrusion

Detection Systems (NIDS) are crucial tools for identifying and responding to unauthorized

access or malicious activities within a network. This study investigates the efficacy of

various machine learning algorithms for the classification of network traffic into normal

and anomalous categories, employing the NSL-KDD dataset as a benchmark. We apply a

rigorous preprocessing pipeline, including feature scaling and dimensionality reduction

using Principal Component Analysis (PCA). The dataset contains 122 original features,

which are reduced to 20 principal components while preserving meaningful information.

To assess the performance of our models, we utilize seven different machine learning

algorithms: Logistic Regression, K-Neighbors Classifier, Gaussian Naive Bayes (Gaussian

NB), Linear Support Vector Classifier (Linear SVC), Decision Tree Classifier, Random

Forest Classifier, and a variant of Random Forest with PCA. The following metrics are

employed for evaluation: training and test accuracy, precision, and recall. Logistic

Regression exhibits competitive results with a training accuracy of 86.97% and a test

accuracy of 86.62%. K-Neighbor Classifier surpasses other models with training accuracy

(98.05%) and test accuracy (97.94%). Gaussian NB, Linear SVC, Decision Tree Classifier,

and Random Forest Classifier all exhibit good performance, consistently achieving high

accuracy, precision, and recall scores. Incorporating PCA into the Random Forest

Classifier provides a minimal reduction in performance, ensuring that dimensionality

reduction does not compromise the model's effectiveness. The PCA Random Forest

demonstrates a training accuracy of 98.99% and a test accuracy of 98.83%. Our findings

suggest the suitability of these machine learning algorithms for intrusion detection tasks,

with K-Neighbors Classifier standing out as the most robust performer in this study.

Dimensionality reduction via PCA found streamlining computation without a significant

sacrifice in model accuracy. This came at the expense of a slight reduction in recall,

indicating a trade-off between precision and sensitivity to positive instances. The Random

Forest analysis identified login attempts as the most crucial feature for network

classification in intrusion detection, followed by the rate of contacting different destination

hosts for the same service. Moreover, according to the findings of this study, Guest vs.

non-guest logins, data volume transfer, service type, and service rate variations were also

vital factors for accurate network traffic classification.

Cite this research:
Kayode-Ajala, O.,(2021).
Anomaly Detection in
Network Intrusion
Detection Systems using
and Machine Learning
and Dimensionality
Reduction
SSRAML SageScience,
4(1), 12–26.

Article history:
Received:
January/11/2021
Accepted:
April/07/2021

.

13

Introduction
An Intrusion Detection System (IDS) is a crucial component within network security

infrastructure designed to scrutinize and monitor internet traffic with the primary objective

of identifying and preventing unauthorized access or malicious activities [1], [2]. IDSs are

employed to safeguard networks from a wide spectrum of security threats, including but

not limited to, unauthorized access attempts, malware intrusions, and denial-of-service

attacks. One of the distinguishing features of IDSs is their ability to not only detect potential

threats but also to take proactive measures, such as blocking traffic originating from

unverified or suspicious IP addresses. This capability is instrumental in mitigating security

breaches promptly [3], [4].

In recent years, there has been a significant surge in the frequency and complexity of

network attacks, necessitating the enhancement and refinement of IDS technology. These

attacks encompass a wide range of tactics, from stealthy intrusion attempts to sophisticated

malware propagation techniques. Consequently, IDSs have evolved to incorporate

advanced algorithms and machine learning models, enabling them to detect subtle

anomalies and patterns indicative of a security breach. Additionally, IDSs now operate in

real-time, continuously analyzing network traffic to promptly identify and respond to

emerging threats, thereby reducing the potential for damage and data loss [5].

The escalation in network attacks underscores the critical importance of IDSs in today's

cybersecurity landscape. Organizations must invest in robust and adaptable IDS solutions

that can adapt to evolving threats. Moreover, the collaboration between IDSs and other

security measures, such as firewalls and intrusion prevention systems (IPS), is essential to

create a comprehensive defense strategy. As the threat landscape continues to evolve, IDS

technology must remain at the forefront of network security, continuously evolving to meet

the challenges posed by sophisticated and relentless adversaries.

Figure 1. challenges of modern network security

14

The proliferation of hacker probes and malicious attacks targeting computer networks

underscores the growing urgency of effective network security measures. One of the key

challenges in this context lies in the differentiation between anomalous network activity

and the norm, a task that is not only arduous but also time-consuming. To discern potential

threats, human analysts are often required to sift through extensive volumes of network

data, seeking out irregular sequences of network connections [6], [7].

The process of distinguishing between legitimate network traffic and potentially malicious

activity is indeed a formidable challenge. This complexity arises from the myriad tactics

employed by hackers, who continually adapt and refine their techniques to evade detection.

As a result, network security analysts are burdened with the responsibility of meticulously

examining network logs and data, a task that demands a deep understanding of network

protocols and patterns.

Efforts to streamline and enhance this process have led to the development of advanced

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS). These systems

leverage sophisticated algorithms, machine learning, and pattern recognition techniques to

automate the detection of anomalous behavior within network traffic. By doing so, they

alleviate the burden on human analysts, allowing them to focus on investigating and

responding to identified threats rather than exhaustively combing through data.

The challenge of network security is compounded by three significant limitations, each of

which plays a pivotal role in exacerbating this issue. Firstly, the exponential growth in the

volume of network data presents a formidable hurdle that is expected to persist. This surge

in data can be primarily attributed to the increasing levels of connectivity, the widespread

adoption of Internet of Things (IoT) devices, and the extensive reliance on cloud-based

services [8], [9]. Addressing this burgeoning data volume necessitates the development of

techniques capable of swiftly, efficiently, and effectively analyzing this data to identify

potential security threats.

The second limitation stems from the demand for in-depth monitoring and granularity to

enhance the accuracy and effectiveness of Network Intrusion Detection Systems (NIDS).

To achieve improved threat detection, NIDS analysis must transition from abstract and

high-level observations to a more detailed and contextually-aware approach. This entails

the ability to attribute behavioral changes within the network to specific elements, such as

individual users, distinct operating system versions, or particular network protocols.

Achieving this level of granularity is essential for accurately pinpointing the source and

nature of potential security breaches [10]–[12].

The third limitation pertains to the sheer diversity of network threats and attack vectors.

The evolving landscape of cyber threats encompasses a multitude of techniques and attack

methodologies. Consequently, security systems must contend with a vast array of potential

vulnerabilities and malicious activities. This necessitates ongoing research and

development efforts to create adaptable and comprehensive security solutions capable of

addressing the multitude of evolving threats [13], [14].

15

There are two primary categories of NIDS, namely Signature-based NIDS (SNIDS) and

Anomaly Detection-based NIDS (ADNIDS), each offering distinct approaches to threat

detection [15]–[17].

In the case of SNIDS, the system operates by identifying attacks based on predefined rules

that have been pre-installed specifically for known attack patterns. Network traffic is

continuously compared against an updated database of attack signatures, allowing the

system to promptly detect intrusions within the network traffic dataset. This approach is

effective in identifying known threats but may struggle with detecting previously unseen

attacks or evolving threats [18]–[20].

On the other hand, ADNIDS takes a different approach by classifying unknown or

abnormal network behavior. It achieves this by meticulously analyzing the structures of

normal network traffic behavior, forming a baseline. Any network traffic that deviates from

this established pattern is flagged as a potential intrusion. This unique methodology equips

ADNIDS with the capability to detect previously unknown or novel attacks, thereby

enhancing the security posture of an organization. One of the notable advantages of

ADNIDS is its capacity to predict and detect new and emerging threats, filling the gap left

by SNIDS, which relies heavily on established attack signatures. This predictive capability

is particularly valuable in the ever-evolving landscape of cyber threats where attackers

constantly devise novel strategies to breach network defenses. As a result, ADNIDS has

become an indispensable component of modern network security strategies, offering

enhanced protection against a broader spectrum of threats, including those that have yet to

be documented.

Data and preprocessing
The NSL-KDD dataset comprises records of internet traffic observed by a basic intrusion

detection network, where, the traffic encountered by an actual IDS, with only traces of its

presence remaining [21]. These records consist of 43 features per entry, where 41 features

pertain to the characteristics of the observed traffic, and the remaining two serve as labels.

These labels include information on whether the traffic is normal or indicative of an attack,

as well as a severity score associated with the observed traffic input [22], [23].

Within this dataset, there are four distinct classes of attacks that can be identified and

categorized. Firstly, there is the Denial of Service (DoS) category, which encompasses

network connections associated with attacks aimed at overwhelming system resources,

rendering them inaccessible to legitimate users [24], [25]. Second is the Probe category,

which encompasses network connections related to probing or scanning activities, often

initiated by attackers in an attempt to gather information about the target system or

network. Thirdly, the Remote-to-Local (R2L) category includes network connections

associated with remote-to-local attacks, wherein unauthorized attempts are made to access

a system or network remotely, typically by exploiting vulnerabilities to gain access. Lastly,

the User-to-Root (U2R) category represents attacks where individuals with limited

privileges on a system attempt to escalate their privileges to achieve superuser or root

access.

16

Table 1. Categories in NSL-KDD dataset

Category Description

Normal This category represents normal network traffic or connections

that are not associated with any intrusion or malicious activity.

Denial-of-Service

(DoS)

This category includes network connections that are part of

denial-of-service attacks, where an attacker overwhelms a system

or network resource to make it unavailable to users [26].

Probe The Probe category encompasses network connections that

involve probing or scanning activities, such as reconnaissance

attempts by attackers to gather information about the target

system or network [27].

Remote-to-Local

(R2L)

The R2L category includes network connections related to

remote-to-local attacks. These attacks involve unauthorized

attempts to access a system or network remotely, typically

exploiting vulnerabilities to gain access [28].

User-to-Root

(U2R)

The U2R category represents user-to-root attacks, where an

attacker with limited privileges on a system attempts to escalate

their privileges to gain superuser or root access.

The NSL-KDD dataset represents a significant improvement over the original KDD'99

dataset in several key aspects. First and foremost, it addresses the issue of redundancy

present in the training set, ensuring that classifiers are not skewed toward more frequently

occurring records. By eliminating redundant entries, the dataset promotes fairness and

accuracy in the evaluation of machine learning algorithms for intrusion detection.

Furthermore, the NSL-KDD dataset eliminates duplicate records in the proposed test sets,

eliminating bias that could arise from methods with superior detection rates on common

records. This adjustment enhances the objectivity and reliability of performance

assessments for various learning algorithms [29].

Another enhancement in the NSL-KDD dataset is the careful selection of records from

different difficulty levels, proportionate to their representation in the original KDD data

set. This approach widens the range of classification rates achieved by different machine

learning methods, facilitating a more precise evaluation of diverse learning techniques and

their efficacy in intrusion detection.

Additionally, the NSL-KDD dataset ensures that the number of records in both the training

and test sets remains reasonable. This eliminates the need for random sampling of a smaller

subset for experiments, ensuring consistent and comparable evaluation results across

different research endeavors. These improvements collectively address the critical

shortcomings of the original KDD dataset, particularly the problem of bias toward frequent

records, and enhance the dataset's suitability for robust intrusion detection research [30].

In the data preprocessing phase, a binary encoding scheme was applied to the 'outcome'

column of the dataset. For rows where the 'outcome' is labeled as "normal," a value of 0

was assigned, indicating a normal network activity. Conversely, for rows where the

'outcome' deviates from "normal" and represents an anomaly or intrusion, a value of 1 was

assigned. This encoding simplifies the classification task, allowing for the clear

differentiation between normal and anomalous network behaviors

17

We applied Robust Scaler to transform the dataset. Robust Scaler operates by first

eliminating the median value from the dataset, which effectively centers the data around

zero. This step is crucial in mitigating the influence of outliers on subsequent analysis.

Subsequently, Robust Scaler scales the data based on the interquartile range (IQR), which

is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile).

This scaling procedure ensures that the data is more resistant to the impact of extreme

values, making it particularly well-suited for datasets with outliers. By using the IQR for

scaling, Robust Scaler effectively transforms the data into a more standardized form,

contributing to improved model performance and reliability in various machine learning

applications.

Methods
To evaluate the effectiveness of our models, we employ seven different machine learning

algorithms: Logistic Regression, K-Neighbors Classifier, Gaussian Naive Bayes (Gaussian

NB), Linear Support Vector Classifier (Linear SVC), Decision Tree Classifier, Random

Forest Classifier, and a modified version of Random Forest incorporating Principal

Component Analysis (PCA).

Logistic Regression is a widely used statistical model for binary classification tasks. It is a

linear model that predicts the probability of a binary outcome based on one or more

predictor variables. The key idea behind logistic regression is to model the log-odds of the

probability of the positive class as a linear combination of the predictor variables. This is

achieved through the logistic function, also known as the sigmoid function, which maps

any real-valued number into the range [0, 1]. Logistic Regression is computationally

efficient and relatively simple to implement, making it a popular choice for various

applications, including spam detection, medical diagnosis, and credit risk assessment.

However, it assumes a linear relationship between the predictors and the log-odds, which

may not hold in all cases, and it is sensitive to outliers.

The K-Neighbors Classifier is a non-parametric, instance-based machine learning

algorithm used for both classification and regression tasks. In the context of classification,

it predicts the class of a data point by considering the classes of its k-nearest neighbors in

the training dataset. The choice of 'k' determines the level of smoothing and model

complexity [31], [32]. Smaller values of 'k' result in more complex and potentially noisy

decision boundaries, while larger values of 'k' result in smoother decision boundaries. K-

Neighbors Classifier is simple to understand and implement, and it can handle complex

decision boundaries and non-linear relationships in the data. However, it can be sensitive

to the choice of 'k' and is computationally expensive for large datasets since it requires

calculating distances between the query point and all training data points.

Gaussian Naive Bayes is a probabilistic classification algorithm based on Bayes' theorem.

It assumes that the features are continuous and follow a Gaussian (normal) distribution.

Despite its simplicity and the "naive" assumption that features are conditionally

independent given the class label, Gaussian NB often performs surprisingly well in

practice, especially when the independence assumption is reasonably satisfied. It is

particularly suited for text classification tasks, such as spam email detection and sentiment

analysis. Gaussian NB calculates the likelihood and prior probabilities from the training

data and then uses Bayes' theorem to estimate the posterior probabilities of different class

18

labels for a given input. While Gaussian NB is computationally efficient and works well

with high-dimensional data, it may not perform as well when the independence assumption

is strongly violated or when dealing with categorical or discrete data, where other variants

of Naive Bayes, such as Multinomial or Bernoulli NB, may be more appropriate [33], [34].

The Linear Support Vector Classifier, often referred to as Linear SVC, is a supervised

machine learning algorithm used primarily for binary classification tasks. It belongs to the

family of Support Vector Machines (SVMs) and is specifically designed for linearly

separable datasets. Linear SVC works by finding the optimal hyperplane that best separates

the two classes while maximizing the margin between them. This hyperplane is determined

based on a subset of training data points called support vectors. Linear SVC is particularly

effective when dealing with high-dimensional data and datasets with a large number of

features. It can also be extended to multiclass classification using strategies like one-vs-all.

However, Linear SVC may not perform well on datasets with complex, non-linear decision

boundaries, for which kernelized SVMs or other non-linear models might be more suitable.

The Decision Tree Classifier is a widely used machine learning algorithm for both

classification and regression tasks. It creates a hierarchical structure resembling a tree to

make decisions based on the input features. At each internal node of the tree, the algorithm

selects the feature that best splits the data into subsets with the highest homogeneity,

typically using measures like Gini impurity or entropy. The decision tree continues to split

the data until it reaches a stopping criterion, such as a maximum tree depth or a minimum

number of samples per leaf. Decision trees are interpretable, easy to visualize, and can

handle both categorical and numerical features. However, they are prone to overfitting,

especially when the tree is deep and complex. Techniques like pruning and using ensemble

methods like Random Forest can mitigate overfitting issues [35].

The Random Forest Classifier is an ensemble learning method that combines multiple

decision trees to improve the accuracy and robustness of the classification model. It

operates by creating a collection of decision trees, each trained on a random subset of the

training data and using random subsets of the features (bagging). The final prediction is

made by aggregating the predictions of individual trees, typically by a majority vote for

classification tasks. Random Forests are known for their ability to handle high-dimensional

data, reduce overfitting, and provide feature importance rankings. They are less sensitive

to hyperparameter tuning compared to individual decision trees and are robust to outliers

and noisy data. Random Forests can handle both classification and regression problems

effectively and have found applications in various domains, including image recognition,

bioinformatics, and finance. However, they may not perform well on extremely imbalanced

datasets, and their interpretability is lower compared to single decision trees.

Dimensionality reduction is a fundamental technique in machine learning and data analysis

that aims to reduce the number of features or dimensions in a dataset while preserving its

essential information [36]. The primary motivation behind dimensionality reduction is to

alleviate the curse of dimensionality, which can lead to increased computational

complexity, overfitting, and difficulties in visualizing and interpreting data.

Dimensionality reduction methods can broadly be categorized into two types: feature

selection and feature extraction. Feature selection involves choosing a subset of the original

features, while feature extraction creates new features that are combinations of the original

ones [37].

19

Principal Component Analysis, commonly referred to as PCA, is a widely used

dimensionality reduction technique. PCA falls under the category of feature extraction and

aims to transform the original data into a new set of uncorrelated variables called principal

component [38], [39]s. These components are ordered by their variance, with the first

principal component capturing the most variance in the data, the second capturing the

second most, and so on. By selecting a subset of these principal components, one can

effectively reduce the dimensionality of the data while retaining a significant portion of the

information.

PCA works by finding the orthogonal linear transformations of the original features that

maximize the variance in the data. It has numerous applications, including data

compression, noise reduction, and visualization. PCA is particularly useful in scenarios

where multicollinearity exists among the original features, as it helps in decorrelating them

[40], [41]. However, PCA assumes that the data is centered (i.e., it has zero mean), and it

may not perform well when the relationship between variables is non-linear. In such cases,

non-linear dimensionality reduction techniques like t-Distributed Stochastic Neighbor

Embedding (t-SNE) or Isomap may be more appropriate.

Results
Logistic Regression achieved a training accuracy of 86.97% and a test accuracy of 86.62%.

The precision values for training and testing were 82.81% and 82.57%, respectively, while

the recall values were 90.86% for training and 90.61% for testing. These results suggest

that the Logistic Regression model has a good balance between accuracy and precision,

with high recall indicating its ability to correctly identify positive instances.

Table 2. Evaluation of the models

Methods/Matrices Training

Accuracy

Test

Accuracy

Training

Precision

Test

Precision

Training

Recall

Test

Recall

Logistic Regression 86.97 86.62 82.81 82.57 90.86 90.61

KNeighbors

Classifier

98.05 97.94 98.23 98.06 97.73 97.67

Gaussian NB 90.8 90.61 91.63 91.53 88.48 88.3

Linear SVC 96.15 95.95 95.25 94.91 96.68 96.65

Decision Tree

Classifier

98.99 98.87 99 98.85 98.99 98.87

Random Forest

Classifier

98.99 98.89 98.99 98.94 98.99 98.82

PCA Random Forest 98.99 98.83 98.99 98.93 98.99 98.7

In contrast, the KNeighbors Classifier demonstrated superior performance with a training

accuracy of 98.05% and a test accuracy of 97.94%. It exhibited high precision for both

training and testing, with values of 98.23% and 98.06%, respectively. The recall values

were also strong, at 97.73% for training and 97.67% for testing. These results highlight the

KNeighbors Classifier's capability to accurately classify instances, particularly evident in

its high precision and recall rates.

20

The Gaussian Naive Bayes (NB) model achieved a training accuracy of 90.80% and a test

accuracy of 90.61%. It demonstrated relatively balanced precision values, with 91.63% for

training and 91.53% for testing. However, its recall values were slightly lower, with

88.48% for training and 88.30% for testing. This suggests that the Gaussian NB model is

robust but may not perform as well as the KNeighbors Classifier in identifying positive

instances.

Figure 2. Decision tree

The Linear SVC exhibited a relatively high training accuracy of 96.15%, demonstrating its

ability to fit the training data well. The test accuracy of 95.95% indicates that the model

generalizes effectively to unseen data. In terms of precision, the training and test precision

scores of 95.25% and 94.91%, respectively, reflect the model's ability to make accurate

positive predictions. The recall scores, both in training (96.68%) and testing (96.65%),

highlight the model's capability to identify a substantial proportion of true positive

instances while maintaining a good balance with precision.

Decision Tree model achieved good results with a training accuracy of 98.99% and a test

accuracy of 98.87%, demonstrating remarkable performance in capturing the underlying

patterns in the training and test datasets. The precision scores, both in training (99.00%)

and testing (98.85%), indicate that the model excels in making precise positive predictions.

The recall scores, identical in both training and testing at 98.99%, underscore the model's

proficiency in identifying true positive instances without compromising precision.

Figure 3. Feature importance random forest.

21

The Random Forest Classifier also delivered strong performance with a training accuracy

of 98.99% and a test accuracy of 98.89%. Its precision scores, in both training (98.99%)

and testing (98.94%), demonstrate a high level of accuracy in classifying positive instances.

While the training recall remained at 98.99%, the test recall slightly decreased to 98.82%,

indicating a slight trade-off between recall and precision on the test dataset.

The PCA Random Forest model exhibited commendable results with a training accuracy

of 98.99% and a test accuracy of 98.83%. It maintained high precision in both training

(98.99%) and testing (98.93%), indicating its ability to make accurate positive predictions.

The recall scores, while strong in both training (98.99%) and testing (98.70%).

PCA appeared to enhance precision, as evidenced by high precision scores in both training

and testing. However, it also introduced a slight trade-off between precision and recall on

the test dataset, as the recall value decreased slightly. This suggests that PCA led to a more

precise but somewhat less sensitive model when identifying positive instances.

On the other hand, the PCA Random Forest model exhibited commendable results with

high training and testing accuracy and maintained high precision values, similar to the non-

PCA Random Forest model. However, the impact of PCA was more pronounced in terms

of recall. The recall scores, while still strong, suggested a slightly greater trade-off between

recall and precision compared to the non-PCA Random Forest model. This indicates that

PCA reduced the model's sensitivity to positive instances to some extent.

22

Figure 4. (counter-clockwise) Logistic regression, KNN, Gaussian NB, and Linear

SVC

The result obtained from feature importance analysis using the Random Forest algorithm

provides valuable insights into the significance of different features in a dataset,

particularly in the context of intrusion detection or any other classification task. In this

case, it's intriguing to observe that the 'is_host_login' feature emerges as the most important

one. This suggests that whether a login attempt is made using the host's account or not

carries substantial weight in determining the outcome of the classification. This could be

indicative of the system's vulnerability to insider attacks, making it a crucial factor to

consider when building an intrusion detection model.

Following 'is_host_login,' the 'srv_diff_host_rate' feature is ranked second in importance.

This ranking implies that the rate at which different destination hosts are contacted for the

same service within a short time frame is a key determinant in classifying network

connections. High values in this feature could signify potential scanning or probing

activities, which are common precursors to various network attacks. Thus, it underlines the

23

significance of monitoring and analyzing such rates in network traffic for effective

intrusion detection.

The third-ranking feature, 'is_guest_login,' adds another layer of context to the analysis. Its

high importance suggests that distinguishing between guest and non-guest logins is critical

for understanding network behavior. Guest logins often come with limited privileges, and

detecting them accurately can help identify potential vulnerabilities or unauthorized access

attempts within a network.

Table 3. Important Features

Feature Name Definition

is_host_login This binary feature indicates whether the login attempt was

made using the host's account or not.

srv_diff_host_rate This feature represents the rate of different destination hosts

that were contacted for the same service as the current

connection in the past two seconds.

is_guest_login This binary feature indicates whether the login attempt was

made as a guest or not.

dst_bytes This feature represents the number of data bytes sent by the

destination host during the connection.

'Dst_bytes,' ranked fourth, measures the volume of data sent by the destination host during

a connection. Its importance underscores the role of data transfer in characterizing network

connections. Unusually high or low data transfer volumes can be indicative of different

network activities, including potentially malicious ones such as data exfiltration or denial

of service attacks. The importance of the 'service' feature is also found to be significant. It

implies that the type of service being accessed plays a significant role in determining the

nature of a network connection. Different services have varying levels of security

requirements and vulnerabilities, making this an essential feature for understanding and

classifying network traffic accurately. The feature 'diff_srv_rate' ranks sixth in importance,

indicating that variations in service rates are also relevant for intrusion detection.

Differences in service rates can be indicative of suspicious or anomalous behavior and

warrant closer scrutiny.

Conclusion
The field of cybersecurity faces ongoing challenges in safeguarding confidential data,

necessitating precise methods for detecting network intrusions. This research focuses on

the application of machine learning techniques in Network Intrusion Detection Systems

(NIDS) and investigates the effectiveness of dimensionality reduction using Principal

Component Analysis (PCA) to enhance the efficiency of intrusion detection models. Seven

distinct machine learning algorithms are evaluated in this research: Logistic Regression,

K-Neighbors Classifier, Gaussian Naive Bayes (Gaussian NB), Linear Support Vector

Classifier (Linear SVC), Decision Tree Classifier, Random Forest Classifier, and a variant

of Random Forest integrated with PCA. These models are assessed using key performance

metrics, including training and test accuracy, precision, and recall.

Logistic Regression demonstrated a good balance between accuracy and precision, with

high recall rates, indicating its potential to correctly identify positive instances. On the

24

other hand, the KNeighbors Classifier exhibited superior performance with exceptional

accuracy, precision, and recall values, showcasing its ability to accurately classify

instances.

The Gaussian Naive Bayes model, while robust, fell slightly behind the KNeighbors

Classifier in identifying positive instances. The Linear SVC showed a strong capacity to

fit the training data and generalize effectively to unseen data while maintaining a good

balance between precision and recall. The Decision Tree model excelled in capturing

underlying patterns and making precise positive predictions, with identical high recall

scores in both training and testing. Similarly, the Random Forest Classifier displayed

strong performance, albeit with a slight trade-off between recall and precision on the test

dataset. The PCA Random Forest model, while commendable, exhibited a slightly greater

trade-off between recall and precision compared to its non-PCA counterpart. while

dimensionality reduction using PCA improved computational efficiency without

significant performance degradation, it is essential to acknowledge that this reduction

process may discard some nuanced features that could be valuable for detecting anomalies.

The analysis using the Random Forest algorithm revealed the importance of various

features in classifying network connections for intrusion detection. The most significant

feature was related to login attempts, highlighting its crucial role in determining network

behavior. Following that, the rate at which different destination hosts were contacted for

the same service emerged as the second most important factor. The distinction between

guest and non-guest logins also played a key role in classification. Additionally, the volume

of data transferred during a connection, the type of service accessed, and variations in

service rates can be essential factors in understanding and classifying network traffic in

intrusion detection systems.

References
[1] D. S. Kim, H.-N. Nguyen, and J. S. Park, “Genetic algorithm to improve SVM based

network intrusion detection system,” in 19th International Conference on Advanced

Information Networking and Applications (AINA’05) Volume 1 (AINA papers), 2005,

vol. 2, pp. 155–158 vol.2.

[2] R. Roman, J. Zhou, and J. Lopez, “Applying intrusion detection systems to wireless

sensor networks,” in CCNC 2006. 2006 3rd IEEE Consumer Communications and

Networking Conference, 2006, Las Vegas, NV, USA, 2006.

[3] M. S. Hoque, M. A. Mukit, and M. A. N. Bikas, “An implementation of intrusion

detection system using genetic algorithm,” arXiv preprint arXiv:1204.1336, 2012.

[4] R. Panigrahi and S. Borah, “A detailed analysis of CICIDS2017 dataset for designing

Intrusion Detection Systems,” Int. J. Eng., 2018.

[5] M. Almseidin, M. Alzubi, S. Kovacs, and M. Alkasassbeh, “Evaluation of machine

learning algorithms for intrusion detection system,” in 2017 IEEE 15th International

Symposium on Intelligent Systems and Informatics (SISY), 2017, pp. 000277–000282.

[6] N. Farnaaz and M. A. Jabbar, “Random Forest Modeling for Network Intrusion

Detection System,” Procedia Comput. Sci., vol. 89, pp. 213–217, Jan. 2016.

[7] M. K. Putchala, “Deep Learning Approach for Intrusion Detection System (IDS) in

the Internet of Things (IoT) Network using Gated Recurrent Neural Networks

(GRU),” Wright State University, 2017.

[8] S. Sharma and R. K. Gupta, “Intrusion detection system: A review,” International

Journal of Security and Its, 2015.

25

[9] F. Sabahi and A. Movaghar, “Intrusion Detection: A Survey,” in 2008 Third

International Conference on Systems and Networks Communications, 2008, pp. 23–

26.

[10] M. A. M. Hasan, M. Nasser, B. Pal, and S. Ahmad, “Support vector machine and

random forest modeling for intrusion detection system (IDS),” J. Intell. Learn. Syst.

Appl., vol. 06, no. 01, pp. 45–52, 2014.

[11] Z. M. Fadlullah, H. Nishiyama, N. Kato, and M. M. Fouda, “Intrusion detection

system (IDS) for combating attacks against cognitive radio networks,” IEEE Netw.,

vol. 27, no. 3, pp. 51–56, May 2013.

[12] J. Jabez and B. Muthukumar, “Intrusion Detection System (IDS): Anomaly Detection

Using Outlier Detection Approach,” Procedia Comput. Sci., vol. 48, pp. 338–346,

Jan. 2015.

[13] K. A. Jackson, “Intrusion detection system (ids) product survey,” Los Alamos

National Laboratory, 1999.

[14] R. Vinayakumar and K. P. Soman, “Evaluation of recurrent neural network and its

variants for intrusion detection system (IDS),” of Information System …, 2017.

[15] W. Lee and S. J. Stolfo, “A framework for constructing features and models for

intrusion detection systems,” ACM Trans. Inf. Syst. Secur., 2000.

[16] C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, “Intrusion detection by machine

learning: A review,” Expert Syst. Appl., 2009.

[17] S. Chebrolu, A. Abraham, and J. P. Thomas, “Feature deduction and ensemble design

of intrusion detection systems,” Comput. Secur., vol. 24, no. 4, pp. 295–307, Jun.

2005.

[18] T.-T.-H. Le, J. Kim, and H. Kim, “An Effective Intrusion Detection Classifier Using

Long Short-Term Memory with Gradient Descent Optimization,” in 2017

International Conference on Platform Technology and Service (PlatCon), 2017, pp.

1–6.

[19] L. Dhanabal and S. P. Shantharajah, “A study on NSL-KDD dataset for intrusion

detection system based on classification algorithms,” International journal of

advanced. e-tarjome.com, 2015.

[20] H. G. Kayacik and A. N. Zincir-Heywood, “Selecting features for intrusion detection:

A feature relevance analysis on KDD 99 intrusion detection datasets,” on privacy,

security and …, 2005.

[21] S. Duque and M. N. B. Omar, “Using Data Mining Algorithms for Developing a

Model for Intrusion Detection System (IDS),” Procedia Comput. Sci., vol. 61, pp. 46–

51, Jan. 2015.

[22] S. Revathi and A. Malathi, “A detailed analysis on NSL-KDD dataset using various

machine learning techniques for intrusion detection,” International Journal of

Engineering Research & Technology (IJERT), vol. 2, no. 12, pp. 1848–1853, 2013.

[23] L. M. Ibrahim and D. T. Basheer, “A comparison study for intrusion database (Kdd99,

Nsl-Kdd) based on self organization map (SOM) artificial neural network,” Journal

of Engineering, 2013.

[24] A. K. Shrivas and A. K. Dewangan, “An ensemble model for classification of attacks

with feature selection based on KDD99 and NSL-KDD data set,” International

Journal of computer, 2014.

[25] B. Ingre and A. Yadav, “Performance analysis of NSL-KDD dataset using ANN,” in

2015 International Conference on Signal Processing and Communication

Engineering Systems, 2015, pp. 92–96.

[26] M. S. Pervez and D. M. Farid, “Feature selection and intrusion classification in NSL-

KDD cup 99 dataset employing SVMs,” in The 8th International Conference on

26

Software, Knowledge, Information Management and Applications (SKIMA 2014),

2014, pp. 1–6.

[27] D. Protić D., “Review of KDD Cup ’99, NSL-KDD and Kyoto 2006+ datasets,”

Vojnoteh. Glas., vol. 66, no. 3, pp. 580–596, Apr. 2018.

[28] R. Thomas and D. Pavithran, “A Survey of Intrusion Detection Models based on NSL-

KDD Data Set,” in 2018 Fifth HCT Information Technology Trends (ITT), 2018, pp.

286–291.

[29] H.-S. Chae, B.-O. Jo, S.-H. Choi, and T.-K. Park, “Feature Selection for Intrusion

Detection using NSL-KDD,” Recent advances in computer, 2013.

[30] G. Meena and R. R. Choudhary, “A review paper on IDS classification using KDD

99 and NSL KDD dataset in WEKA,” in 2017 International Conference on Computer,

Communications and Electronics (Comptelix), 2017, pp. 553–558.

[31] V. Mitra, C.-J. Wang, and S. Banerjee, “Text classification: A least square support

vector machine approach,” Appl. Soft Comput., vol. 7, no. 3, pp. 908–914, Jun. 2007.

[32] L. R. Hazım, “Four classification methods Naïve Bayesian, support vector machine,

K-nearest neighbors and random forest are tested for credit card fraud detection,”

Altınbaş Üniversitesi, 2018.

[33] D. A. D. D. Agrawal, “COMPARISONS OF CLASSIFICATION ALGORITHMS

ON SEEDS DATASET USING MACHINE LEARNING ALGORITHM,”

Compusoft, vol. 7, no. 5, pp. 2760–2765, May 2018.

[34] C. Rahmad, R. Ariyanto, and D. Rizky, “Brain signal classification using genetic

algorithm for right-left motion pattern,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 11,

2018.

[35] R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Applying convolutional

neural network for network intrusion detection,” in 2017 International Conference on

Advances in Computing, Communications and Informatics (ICACCI), 2017, pp.

1222–1228.

[36] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,” J. R.

Stat. Soc., 1999.

[37] S.-H. Kim and G. H. Dunteman, “Principal Components Analysis,” J. Educ. Stat., vol.

16, no. 2, p. 141, 1991.

[38] J. Shlens, “A tutorial on principal component analysis,” arXiv preprint

arXiv:1404.1100, 2014.

[39] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics

Intellig. Lab. Syst., vol. 2, no. 1, pp. 37–52, Aug. 1987.

[40] C. R. Rao, “The Use and Interpretation of Principal Component Analysis in Applied

Research,” Sankhyā: The Indian Journal of Statistics, Series A (1961-2002), vol. 26,

no. 4, pp. 329–358, 1964.

[41] R. Bro and A. K. Smilde, “Principal component analysis,” Anal. Methods, 2014.

