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Abstract 
Medical imaging plays a crucial role in diagnosing various diseases, including pneumonia, in 

pediatric patients. In this research, we investigate the performance of two convolutional neural 

networks (CNNs), VGG-16 and ResNet-50, for the task of pneumonia detection using chest X-ray 

images of pediatric patients aged one to five years old. The dataset consists of anterior-posterior 

chest X-ray images, categorized into two classes: Pneumonia and Normal. For preprocessing, we 

standardized the dataset by setting each sample mean to zero and dividing the inputs by the standard 

deviation of the dataset. Additionally, we applied ZCA whitening to further enhance the data. The 

two CNN models, VGG-16 and ResNet-50, were trained and evaluated on the dataset. VGG-16, 

with 16 layers, can classify images into 1000 object categories, while ResNet-50 is a deeper CNN 

with 50 layers. The experimental results demonstrate that the ResNet-50 model outperformed the 

VGG-16 model in terms of accuracy and loss during testing. The VGG-16 model achieved a testing 

accuracy of 74.9% with a testing loss of 48.8%, whereas the ResNet-50 model achieved a 

significantly higher testing accuracy of 88.9% with a lower testing loss of 28.9%. This study 

highlights the efficacy of deep learning models in pediatric pneumonia detection and underscores 

the superior performance of ResNet-50 over VGG-16. These findings have significant implications 

for developing more accurate and efficient diagnostic tools to aid medical professionals in 

diagnosing pneumonia in pediatric patients. 

Introduction  
Pneumonia, a prevalent and serious inflammatory lung condition, targets the delicate 

alveoli, small air sacs responsible for gas exchange within the lungs [1], [2]. Characterized 

by an array of distressing symptoms, such as productive or dry cough, chest pain, fever, 

and breathing difficulties, pneumonia's impact on individuals can vary significantly. 

Primarily triggered by viral or bacterial infections, it can also be caused by other 

microorganisms, certain medications, or underlying health conditions like autoimmune 

diseases. A range of risk factors can predispose individuals to pneumonia, including cystic 

fibrosis, chronic obstructive pulmonary disease (COPD), asthma, diabetes, heart failure, a 

history of smoking, compromised cough reflexes following a stroke, and a weakened 

immune system [3], [4]. When infectious agents, such as bacteria or viruses, infiltrate the 

alveoli, the body's immune response is triggered, leading to an influx of immune cells and 

the release of inflammatory mediators. As a result, the alveoli become filled with pus and 

cellular debris, hindering efficient gas exchange and causing respiratory distress. In severe 

cases, the infection can spread to neighboring lung tissues, causing consolidation, abscess 

formation, or even pleural effusion. The severity and course of pneumonia depend on the 
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type of pathogen, the individual's overall health status, and the timeliness and 

appropriateness of medical intervention [5]. 

Pneumonia can present differently across age groups, with distinct symptoms observed in 

children under 5 years old, infants, and older individuals. Children in this age range may 

experience rapid breathing or wheezing, which can be concerning for caregivers and may 

be accompanied by other signs of respiratory distress. In infants, the symptoms can be more 

subtle, with some appearing asymptomatic. However, they may exhibit symptoms like 

vomiting, lethargy, or difficulties with feeding, which can be indicative of an underlying 

respiratory infection [6], [7]. Conversely, older individuals may display milder symptoms, 

making pneumonia potentially harder to detect in this population. 

In the field of medical diagnostics, image analysis has emerged as a critical tool for the 

accurate detection of pneumonia, especially in pediatric patients [8]. The ability to 

promptly and precisely identify pneumonia is of utmost importance as it allows for timely 

treatment and management of the disease, ultimately leading to improved patient outcomes. 

Radiologists, healthcare professionals, and specialized computer algorithms all play 

pivotal roles in this process. By carefully reviewing chest X-ray images, these experts can 

pinpoint characteristic patterns that may indicate pneumonia, such as focal opacities or 

diffuse haziness in the lungs [9], [10]. Considering the complexities of pediatric cases, 

healthcare professionals further enhance their diagnostic accuracy by factoring in the 

clinical history and symptoms of the young patients [11]. 

Over the past few years, the domains of deep learning and artificial intelligence have 

garnered immense attention and popularity [12]. Deep learning, in particular, has emerged 

as a prominent subset of machine learning, drawing inspiration from the workings of the 

human brain. It achieves this by employing intricate networks of interconnected layers 

known as neural networks. Each layer progressively processes different sets of information, 

ultimately producing the desired output. This unique approach has positioned deep learning 

as a powerful force within the machine learning industry, especially when harnessed with 

vast amounts of data, often referred to as Big Data [13], [14]. 

The healthcare industry, with its abundance of data and critical need for efficient and 

accurate results, represents an ideal environment for the application of advanced machine 

learning techniques like deep learning [15]. The sheer volume of data that can be collected 

in healthcare, ranging from patient records and medical imaging to genetic data and clinical 

trial results, presents an unprecedented opportunity for deep learning algorithms to extract 

meaningful insights and patterns [16]. 

With the growing adoption of electronic health records and digital health technologies, the 

healthcare sector has become more data-driven than ever before. Deep learning techniques 

can harness this wealth of data to improve decision-making processes, reduce medical 

errors, and enhance patient outcomes. By automating and augmenting various tasks, such 

as medical image analysis, drug discovery, and patient risk stratification, deep learning can 

support healthcare professionals in making faster, more informed decisions. This, in turn, 

can lead to optimized treatment strategies and more efficient healthcare delivery. 

In recent years, the medical community has witnessed a remarkable transformation in 

pneumonia detection thanks to advancements in artificial intelligence and machine learning 

technologies. This breakthrough has given rise to powerful computer algorithms that can 
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be trained on vast datasets of annotated chest X-ray images, enabling them to recognize 

patterns associated with pneumonia with remarkable precision. Deep learning techniques 

have proven particularly effective in the analysis of chest X-ray images in pediatric 

patients. By utilizing neural networks with multiple layers, these algorithms can 

automatically extract intricate features from the X-ray images, allowing for the detection 

of subtle abnormalities that might otherwise go unnoticed by the human eye [17]. 

The integration of artificial intelligence into pneumonia detection workflows has shown 

great promise in revolutionizing pediatric healthcare. With the ability to process large 

volumes of data rapidly, computer algorithms can efficiently analyze chest X-ray images 

and provide valuable insights to healthcare professionals. This augmented analysis not only 

expedites the diagnosis process but also helps in reducing the workload of radiologists and 

medical practitioners, enabling them to focus on other critical aspects of patient care. 

Furthermore, the use of AI-powered image analysis systems promotes consistency and 

standardization in diagnosing pneumonia cases, minimizing the potential for human error 

and subjectivity in interpretation [18]. 

Traditional manual assessment of chest X-ray images by human radiologists can be time-

consuming and prone to errors. In contrast, computer algorithms can swiftly process 

massive datasets of images, significantly reducing the time required for analysis and 

decision-making. Moreover, these algorithms can detect subtle patterns and variations that 

might be challenging for human eyes to discern, enhancing the overall accuracy and 

sensitivity of pneumonia detection . 

The objective of this research is to investigate the performance of two convolutional neural 

networks (CNNs), VGG-16 and ResNet-50, for the task of pneumonia detection using chest 

X-ray images of pediatric patients aged one to five years old. The study aims to evaluate 

the effectiveness of these deep learning models in accurately classifying chest X-ray 

images into two classes: Pneumonia and Normal. 

Materials and Methods   

Convolutional Neural Network (ConvNet/CNN) 

Convolutional neural networks (CNNs) have driven significant advancements within the 

realm of deep learning [19]. These networks have found widespread application in image 

recognition tasks, and their growing popularity can be attributed to several key factors. One 

compelling reason behind the popularity of CNN models is their ability to delve deeper 

into image analysis compared to traditional neural networks (NNs). This is made possible 

by their architectural design, which facilitates the extraction of highly intricate and nuanced 

features from images [20]. The typical structure of a CNN consists of three essential layers: 

the input layer, the hidden layer, and the output layer [21]. 

When working with CNNs, raw images are initially fed into the input layer, from where 

they are seamlessly passed on to the hidden layer. It is within this hidden layer that the 

crucial task of feature extraction takes place. This layer is composed of three integral 

components: the convolution layer, the pooling layer, and the fully connected layer. 

The cornerstone of a CNN model lies in its feature extraction capabilities, and this is where 

the convolution layer comes into play [22]. By convoluting the raw images with a sliding 

window containing a fixed-size filter, this layer automatically discerns and extracts 
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relevant features from the input data. This ability to automatically learn and identify crucial 

patterns is what empowers CNNs to excel in image recognition tasks. Next, the pooling 

layer steps in to address the issue of dimensionality. As the feature maps obtained from the 

convolution layer can be quite extensive, the pooling layer performs a vital function in 

reducing their dimensionality while preserving the most significant features. This process 

of dimensionality reduction not only helps manage computational complexity but also 

enhances the network's ability to recognize patterns across diverse images. The fully 

connected layer serves as the concluding segment of the CNN model [23]. As it implies, 

this layer fully connects the previously processed feature maps, effectively flattening them 

to perform the classification task. By doing so, the CNN can accurately categorize the input 

images based on the extracted features, making it a powerful tool for tasks like image 

classification, object detection, and more [24]. 

VGG16 

VGG16 stands for the Visual Geometry Group 16, a renowned CNN architecture highly 

regarded in the field of computer vision. This model is widely acclaimed for its exceptional 

performance in image-related tasks [25]. The creators of VGG16 meticulously analyzed 

existing networks and made significant advancements by incorporating a compact (3 × 3) 

convolution filter architecture, surpassing previous state-of-the-art configurations. 

The "16" in VGG16 denotes the remarkable depth of the network, comprising 16 layers 

with trainable weights. With an extensive structure, VGG16 boasts an impressive scale, 

featuring an astounding 138 million parameters, making it one of the largest and most 

powerful neural networks available today in the realm of computer vision. VGG-16 follows 

a distinct architecture for image processing. It takes a fixed-size RGB image of 244x244 

pixels as input. Before passing through VGG-16, each pixel's RGB value is subtracted by 

its mean value as part of the preprocessing step. 

Once preprocessing is complete, the images go through a series of convolutional layers, 

each equipped with small receptive-field filters of size 3x3. In some configurations, the 

filter size is set to 1x1, implying a linear transformation of the input channels followed by 

a non-linear activation [26]. 

The convolution operation's default stride is set to 1, enabling precise feature extraction. 

Spatial pooling is then performed through five max-pooling layers that come after multiple 

convolutional layers [27]. This pooling step aids in reducing spatial dimensions, making 

the subsequent computations more efficient. 

ResNet-50 

ResNet, short for Residual Network, represents a distinctive class of convolutional neural 

networks (CNNs) known for its groundbreaking approach to handling deep network 

architectures . ResNet introduces a revolutionary idea of residual learning, which enables 

the successful training of extremely deep neural networks without suffering from the 

vanishing gradient problem [28]. This problem had previously hindered the efficacy of 

deep networks due to the challenges of propagating gradients through multiple layers 

during backpropagation. The ingenious solution lies in the inclusion of shortcut 

connections, also known as skip connections or identity mappings. By bypassing certain 

layers and connecting them directly to deeper layers, ResNet creates a residual block that 

preserves the original information while allowing the network to learn residual features . 
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This unique design effectively transforms a conventional network into a residual network, 

providing the foundation for various ResNet variants with differing numbers of layers. 

One of the most widely used variants is ResNet-50, denoting a specific architecture with a 

remarkable depth of 50 layers. Comprising 48 convolutional layers, one MaxPool layer, 

and one average pool layer, ResNet-50 demonstrates the power of stacking multiple 

residual blocks to create a robust and expressive CNN. Through its deep structure, ResNet-

50 excels in learning intricate patterns and features from data, making it highly suitable for 

challenging computer vision tasks, such as image classification, object detection, and 

segmentation [29], [30]. The ResNet-50 architecture has become a benchmark model for 

assessing the performance of various deep learning models in the field of image analysis, 

showcasing its versatility and reliability. 

Initially, the ResNet series began with the ResNet-34 architecture, which consisted of 34 

weighted layers. This earlier version laid the foundation for the subsequent advancements 

in residual learning. By pioneering the concept of shortcut connections, ResNet-34 set the 

stage for tackling the limitations of traditional deep networks. The shortcut connections not 

only introduced greater depth to CNNs but also enabled smoother information flow during 

training, mitigating the risk of vanishing gradients and promoting more efficient 

optimization.  

Data 

Chest X-ray images (anterior-posterior) collected from Mendeley data  were chosen from 

a collection of past cases involving pediatric patients aged one to five years at Guangzhou 

Women and Children's Medical Center, Guangzhou [31]. These X-ray scans were 

conducted during the course of the patients' regular clinical care. To ensure the accuracy 

and reliability of the analysis conducted on the chest X-ray images, a rigorous quality 

control process was implemented. This involved eliminating all scans of low quality or 

those that were unreadable [32]. For further evaluation and grading, two expert physicians 

assessed the diagnoses of the selected images before they were deemed suitable for training 

the AI system. Moreover, to account for any potential grading errors, an additional 

examination was conducted on the evaluation set by a third expert [33].  

Preprocessing 

The training set for the dataset comprises a total of 5216 images, while the testing set 

consists of 624 images, and the validation set contains 16 images. Focusing on the presence 

of pneumonia and normal cases in the dataset, we observe that there are a total of 4273 

images representing pneumonia cases, and 1583 images depicting normal cases. 

In the image processing pipeline, we applied three fundamental techniques: image dilation, 

image erosion, and the Sobel filter [34], [35]. Image dilation is employed to expand the 

boundaries of objects within an image, enhancing their prominence and filling gaps 

between them. Conversely, image erosion works to shrink the object boundaries, 

eradicating small irregularities and noise [36], [37]. These two complementary operations 

help fine-tune and manipulate the image's structural elements effectively. Furthermore, we 

utilized the Sobel filter, a powerful edge detection tool that highlights edges within the 

image by computing gradients in both the horizontal and vertical directions. Employing 

both vertical and horizontal Sobel filters, we effectively highlight and extract the edges 

present within the image. Upon edge extraction, the subsequent step involves determining 
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the edge that lies farthest from the center of the image, which is approximated by 

identifying the vertical center of the image. This crucial information aids in locating the 

region of interest, where the most prominent edge lies. 

With the edge farthest from the center identified, we proceed to perform a vertical cropping 

operation. By cropping along this particular edge, we can isolate and extract the relevant 

section from the original image. This cropping process strategically focuses on the most 

significant edge, enabling us to retain the essential features of the image while discarding 

irrelevant elements. 

 

Figure 1. input Image Dialation 

 
 

Figure 2. Sober Filter on input images 
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Results 
The VGG16 model used for the task has a total of 14,714,688 parameters. All of these 

parameters are trainable, meaning they can be adjusted during the training process to 

improve the model's performance. There are no non-trainable parameters in this specific 

configuration. After evaluating the model on the testing dataset, it achieved an accuracy of 

74.9%, which indicates the proportion of correctly classified samples. Additionally, the 

testing loss, a measure of the model's prediction error, is recorded as 48.8. 

Figure 3. VGG16 (Model accuracy and loss) 

  

  
 

The ResNet50 model was employed for the task, and upon evaluation on the testing dataset, 

it achieved an impressive testing accuracy of 88.9%. This accuracy metric reflects the 

proportion of correctly classified samples by the model. Additionally, the testing loss, a 

measure of the model's prediction error, was recorded as 28.9, which indicates how well 

the model's predictions align with the actual ground truth values. These results demonstrate 

the strong performance and robustness of the ResNet50 model in handling the given task, 

showcasing its ability to accurately classify and generalize to new data. 

  

Figure 4. VGG16 (Model accuracy and loss) 
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Figure 5.  Prediction performance demonstration Correctly predicted class 

 
 

 
Figure 6.  Prediction performance demonstration Correctly predicted class 

 
 

Conclusion  
This research emphasizes the crucial role of medical imaging and deep learning in pediatric 

pneumonia detection. Using convolutional neural networks, specifically VGG-16 and 

ResNet-50, our study investigated the potential of these models in accurately classifying 

chest X-ray images into pneumonia and normal categories. The results clearly demonstrate 

that ResNet-50 outperformed VGG-16 in terms of accuracy and loss during testing. With 

a testing accuracy of 88.9% and a testing loss of 28.9%, ResNet-50 exhibited superior 

performance compared to VGG-16's testing accuracy of 74.9% and testing loss of 48.8%. 
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The study applies standardization and other preprocessing techniques to enhance the data, 

the impact of these preprocessing techniques on the CNN models' performance is not 

extensively explored. Alternative preprocessing methods could potentially yield different 

results, and a sensitivity analysis of different preprocessing techniques would strengthen 

the study's conclusions. The study solely evaluates the performance of the CNN models on 

the dataset used for training and testing. The absence of an external validation dataset from 

a different source or institution limits the assessment of the models' generalizability to 

unseen data. 

The study does not address the potential consequences of false positives in the context of 

clinical decision-making. False positives may lead to unnecessary follow-up tests or 

treatments, which could impact healthcare resources and patient well-being. A 

comprehensive analysis of false positives and their implications would add value to the 

study's applicability in clinical practice. While the study compares VGG-16 and ResNet-

50, it does not compare the performance of these CNN models with other pneumonia 

detection methods, such as traditional machine learning algorithms or radiologist 

interpretations. A comparison with other approaches would provide a broader perspective 

on the superiority of deep learning models in this specific application. 

Our study contributes to the growing body of evidence supporting the integration of deep 

learning models in pediatric pneumonia detection. The promising results obtained with the 

ResNet-50 model underscore its potentials in medical imaging landscape and improve 

patient care. Accurate and efficient pneumonia diagnosis in pediatric patients is crucial for 

timely treatment and better health outcomes. As technology advances, the adoption of deep 

learning architectures in clinical practice could lead to more effective disease detection and 

better resource allocation in healthcare settings. 
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