
67

Analyzing Keystroke Dynamics for User

Authentication: A Comparative Study of

Feature Extractions and Machine

Learning Models
Kannan Nova

Abstract
Keystroke dynamics, the analysis of typing patterns, has gained considerable attention as

a biometric authentication method due to its potential for non-intrusive and continuous user

identification. In this research, we investigate the effectiveness of different feature

extraction techniques and machine learning models in analyzing keystroke data for user

authentication. The dataset used in this study consists of 50 users' attempts to enter the 11-

character string 'Restaurant' seven times, with recorded timestamps for each key press and

release corresponding to the initial key press. To explore the potential of keystroke

dynamics for user authentication, we first extract a range of features from the dataset. These

features include raw features such as key-press time and key-release time, as well as

derived features such as durations, latencies, digraphs, and second-order statistical

measures. We then evaluate the performance of three popular machine learning models:

Decision Tree, Random Forest, and XGBoost, using these features. Our results indicate

that the inclusion of first and second-order features significantly enhances the performance

of the machine learning models compared to raw features alone. The Random Forest and

XGBoost models demonstrate superior performance across all feature combinations,

achieving high R-squared values and low root mean square error (RMSE) values. This

highlights the importance of capturing both local and higher-level patterns in keystroke

data for accurate user authentication.

Keywords: Authentication, Biometric, Feature extraction, Keystroke
dynamics, Machine learning, User identification, User authentication

Introduction
Behavioral biometrics refer to a collection of distinctive innate behaviors exhibited by

individuals, which can be utilized as a means of user identification [1]. One prominent

example of behavioral biometrics is keystroke dynamics, which involves analyzing the

typing patterns of an individual. Keystroke dynamics take into account various factors such

as the duration of key presses, the time intervals between keystrokes, and the pressure

applied while typing [2]. By capturing and analyzing these unique patterns, keystroke

dynamics can serve as an effective method for user authentication and verification [3], [4].

Apart from keystroke dynamics, there exists a wide array of behavioral biometrics that can

be employed to identify users. Some of these biometric measures involve physical actions,

such as the gait or stride of an individual. Gait analysis involves studying the manner in

which a person walks, including factors like stride length, pace, and posture. Similarly, lip

movement analysis focuses on the unique patterns of lip motion exhibited by individuals

Cite this research:
Nova, K.,(2022).
Analyzing Keystroke
Dynamics for User
Authentication: A
Comparative Study of
Feature Extraction and
Machine Learning Models
SSRAML SageScience,
5(2), 67–80.

Article history:
Received:
April/12/2021
Accepted:
November/08/2022
Published:
November/20/2022

.

68

while speaking [5]. These physical behavioral biometrics can be utilized to enhance

security systems by providing an additional layer of user authentication.

In addition to physical actions, technological-based behavioral biometrics can also be

leveraged for user identification. Graphical User Interface (GUI) interaction is one such

example, which involves analyzing how individuals interact with various elements of a

graphical user interface, such as buttons, sliders, and menus. By examining the patterns

and preferences in GUI interaction, it becomes possible to differentiate between different

users. Another example is game strategy analysis, which entails studying the individual

approaches and decision-making patterns exhibited by users in gaming environments. By

understanding the unique strategies employed by players, game strategy analysis can aid

in user identification and fraud detection [6].

Keystroke dynamics, as a form of behavioral biometric, focus on capturing and analyzing

the unique typing patterns exhibited by individuals [7]. The origins of keystroke dynamics

can be traced back to the 1800s, where Morse Code operators could be distinguished from

one another based on their distinct use of the device. This early recognition of individual

typing patterns laid the foundation for the development of keystroke dynamics as a reliable

method of identification and authentication.

One of the notable advantages of keystroke dynamics is its inherent reliability. Unlike

traditional authentication methods such as passwords or PINs, which can be forgotten or

compromised, keystroke dynamics are based on inherent behaviors that are learned slowly

over time through repetition and consistency [8]. These characteristics make keystroke

dynamics highly desirable for identification and authentication purposes, as they offer a

level of reliability that is not easily replicated.

When capturing keystroke data, there are three key metrics that are typically recorded.

Firstly, the keycode refers to the specific key that is pressed by the user. This information

is essential for understanding the individual's typing behavior and the unique patterns

associated with each key. Secondly, the timestamp of keypress records the precise moment

when a key is initially pressed down by the user. This temporal data provides insights into

the timing aspects of the typing pattern. Lastly, the timestamp of key release captures the

moment when the user releases the pressed key [9]. This metric helps to determine the

duration of each keystroke and the timing intervals between consecutive keystrokes.

By recording and analyzing these key metrics, keystroke dynamics can serve as a robust

biometric modality for user identification and authentication. The unique typing patterns

and timing characteristics of individuals can be effectively used to distinguish one user

from another, enhancing security systems and providing reliable means of access control.

As technology advances, keystroke dynamics are likely to continue evolving, becoming

even more accurate and widespread in various applications that require secure and reliable

user identification.

The capture phase plays a crucial role in the overall biometric authentication process, as it

involves collecting data from individuals to build their unique biometric models. The

capture process occurs at two significant stages: enrollment and verification.

During the enrollment phase, multiple samples of the user's biometric data are collected in

order to construct their individual model. The exact procedure for enrollment can vary

69

depending on the type of keystroke dynamics system being used. For instance, some

systems may require users to type a fixed string multiple times, while others may monitor

the user's computer usage to capture a comprehensive dataset. Additionally, the quantity

of data required for enrollment can vary significantly across different studies and

implementations. Some studies may require a large amount of data to establish a robust

biometric model, while others may achieve satisfactory results with a smaller dataset.

In the verification phase, a single sample is collected from the user for comparison with

their pre-established biometric model. From this sample, various features are extracted to

create a representation of the user's unique typing pattern. These features may include

metrics such as key press duration, key release timing, and pressure applied while typing.

Once the features are extracted, they are compared to the stored biometric model of the

claimant [10]. The comparison process involves measuring the similarity between the

extracted features and the stored model, usually through mathematical algorithms or

statistical techniques. Based on this comparison, a decision is made regarding the

authenticity of the user's identity.

Effective capture during both enrollment and verification phases is crucial for the accuracy

and reliability of biometric authentication systems. In the enrollment phase, capturing a

diverse range of user samples ensures that the biometric model accurately represents the

individual's unique typing pattern [11]. Adequate sample size and variation in the data

contribute to a more robust and reliable model. During verification, the quality of the

captured sample plays a vital role in determining the accuracy of the authentication process.

Factors such as sensor precision, environmental conditions, and user cooperation can

influence the quality of the captured sample and, consequently, the overall performance of

the system.

Feature extraction and data preprocessing
Keystroke dynamics analysis involves the extraction and analysis of various features

derived from recorded keystroke data [12].

Raw features

Recorded keystroke data, namely, key-press time and key-release time for each key.

First order features:

The most commonly extracted characteristics are local or first order features, which are

calculated by subtracting timing values. Duration refers to the length of time a key is

pressed. For a given key "i", it is determined using the following formula [12]:

duration = time when event = RELEASE - time when event = PRESS

We then obtain a timing vector, also known as PR in literature, which contains the duration

of each key press in the order they were pressed. For all "i" where 1 ≤ i ≤ n, PR(i) represents

the duration of the "i-th" key press.

There are different types of latencies that can be utilized, which are computed by

calculating the time differences between two key events.

70

PP Latency: This refers to the time difference between the pressing of each key. It is
obtained using the following equation [12]:

For all "i" where 1 ≤ i < n, PP(i) = time when (i+1)-th event = PRESS - time when i-th event

= PRESS

RR Latency: This represents the time difference between the release of each key. It is

calculated using the following equation:

For all "i" where 1 ≤ i < n, RR(i) = time when (i+1)-th event = RELEASE - time when i-th event

= RELEASE

RP Latency: This indicates the time difference between the release of one key and the

pressing of the next key. It can be obtained using the following equation:

For all "i" where 1 ≤ i < n, RP(i) = time when (i+1)-th event = PRESS - time when i-th event

= RELEASE

Another frequently encountered concept in the literature is the notion of a digraph. A

digraph represents the time required to press two keys sequentially. The digraph features

D of a password are computed as follows:

For all "i" where 1 ≤ i < n, Di = time when (i+1)-th event = RELEASE - time when i-th event

= PRESS.

Second order features:

Some characteristics are not directly extracted from the raw biometric data, but rather

derived from the first order features.

Minimum/maximum: This involves determining the minimum and maximum values for

each type of data (latency and duration).

Mean/standard deviation: This entails calculating the average value and the standard

deviation for each type of data (latency and duration).

Slope: By examining the slope of the biometric sample, we are interested in the overall

pattern of typing. We expect that users maintain a consistent typing style even if their speed

may vary. The new set of features is computed as follows:

For all "i" where 1 ≤ i < n, result(i) = source(i+1) - source(i) (8)

Spectral information: A discrete wavelet transformation can be applied to the originally

extracted features. All the operations are performed on the data that has undergone wavelet

transformation.

71

Figure 1. Correlation heatmap among features

Table 1. First few correlations among features

Features A Features B Correlation score

press-12 release-12 0.999361

PP-mean release-12 0.999361

RR-mean release-12 0.999228

release-7 press-7 0.998849

release-11 press-11 0.998824

release-9 press-9 0.99882

PP-mean RR-mean 0.998753

72

Figure 1 shows the correlation heatmap among features. The provided data in table 1 shows

a set of correlation scores. The "press-12" and "release-12" have a correlation score of

0.999361, suggesting a very strong positive correlation between them. Similarly, in the

second row, "PP-mean" and "release-12" also have a correlation score of 0.999361,

indicating a strong positive correlation between these two features. "RR-mean" and

"release-12" have a correlation score of 0.999228, which is also very high. This indicates

a strong positive correlation between these features, meaning that they tend to vary together

in a similar pattern.

We also observe high correlation scores between "release-7" and "press-7," "release-11"

and "press-11," and "release-9" and "press-9," respectively. All three pairs have scores

above 0.9988, indicating a strong positive correlation. This suggests that when one feature

is released, the corresponding feature is likely to be pressed. "PP-mean" and "RR-mean"

have a correlation score of 0.998753, indicating a strong positive correlation.

Figure 2. Keystrokes behavior for 2 randomly selected users

To preprocess our continuous data and convert it into discrete values, we utilized a

technique called binning or discretization. This process involves dividing the range of

73

continuous feature values into distinct intervals or bins and assigning discrete labels to each

bin. By doing so, we can simplify the representation of our data and make it more suitable

for certain algorithms. Keystroke behaviors of two randomly selected (user 10, and user

20) are shown in figure 2.

For the binning process, we employed a specific algorithm called KBinsDiscretizer. This

algorithm is designed to perform the discretization task effectively. It takes the continuous

features as input and outputs discrete values that fall within the range of [0, numBins),

where numBins represents the number of bins or intervals we want to create.

Once we obtained the discrete representations of our features using KBinsDiscretizer, we

proceeded to split our data into two sets: the training dataset and the validation dataset.

This division is crucial for evaluating the performance of classifiers or predictive models.

To maintain the integrity of the data distribution while splitting, we employed stratified

sampling. This sampling technique ensures that the class distribution in both the training

and validation datasets is representative of the original dataset. In our case, we allocated

80% of the data to the training dataset and the remaining 20% to the validation dataset.

This division allows us to train our classifiers on a substantial portion of the data while

reserving a separate subset for assessing their performance.

Classification methods
Decision trees are used to make predictions and decisions by creating a hierarchical

structure of rules and conditions [13], [14]. They work by partitioning the input data based

on various features and attributes, recursively splitting the dataset into smaller subsets at

each node. These splits are determined by evaluating the significance of different features

in terms of their ability to separate the data and make accurate predictions. The decision

tree algorithm aims to maximize the information gain at each step, selecting the most

informative feature to split the data [15]. This process continues until a termination

condition is met, such as reaching a predefined depth or achieving a minimum number of

samples in each leaf node. Decision trees excel at handling both numerical and categorical

data, providing interpretable and explainable models. However, they are prone to

overfitting when the tree becomes too deep or when the dataset contains noisy or irrelevant

features [16], [17].

Random forests, on the other hand, are a powerful ensemble method that leverages decision

trees to improve prediction accuracy and reduce overfitting. In random forests, multiple

decision trees are built independently using different subsets of the training data and a

random selection of features. Each tree in the forest is constructed by sampling the training

data with replacement, a process known as bootstrap aggregating or bagging. By creating

a diverse set of trees that are trained on different subsets of data, random forests promote

robustness and generalize well to unseen examples [18]. Additionally, at each split in a

decision tree, only a subset of randomly chosen features is considered, further adding to

the diversity of the forest [19]. The final prediction of a random forest is obtained by

aggregating the predictions of individual trees, either through majority voting in

classification tasks or averaging in regression problems [15].

XGBoost, short for Extreme Gradient Boosting, is a highly sophisticated and powerful

machine learning algorithm that belongs to the family of gradient boosting methods [20],

[21]. It excels in solving complex prediction and regression problems by creating an

74

ensemble of weak learners, typically decision trees, and iteratively optimizing their

performance. XGBoost combines the strengths of gradient boosting with several

innovative techniques to achieve exceptional accuracy and efficiency. At its core, XGBoost

utilizes gradient descent to iteratively train a sequence of decision trees. Each subsequent

tree is built to correct the errors or residuals made by the previous trees, with a focus on

minimizing a specific loss function. The algorithm assigns higher weights to the

misclassified samples, enabling subsequent trees to prioritize their correct classification.

XGBoost provides flexible options for different loss functions, allowing users to tailor the

algorithm to specific tasks such as binary classification, multiclass classification, and

regression [22], [23].

R-square measures the proportion of the total variance in the dependent variable that can

be explained by the independent variables in the model The R-square value is calculated

by dividing the sum of squares of the regression (explained variance) by the total sum of

squares (total variance) . A higher R-square value suggests a better fit of the model to the

data. Root Mean Squared Error (RMSE) is a commonly used evaluation metric in

regression analysis. It measures the average magnitude of the residuals or errors between

the predicted values and the actual values in a regression model. RMSE provides a measure

of the model's accuracy in predicting the dependent variable. To calculate RMSE, the

squared differences between the predicted and actual values are averaged, and then the

square root is taken to obtain the final value. RMSE is preferred over mean absolute error

(MAE) because it penalizes larger errors more heavily, making it more sensitive to outliers.

A lower RMSE value indicates better predictive performance, as it reflects smaller

prediction errors.

Results and discussion
We calculated R-square and RMSE to evaluate The Decision Tree, Random Forest, and

XGBoost. The first, second, third, and fourth stages of of our calculations involved

selecting raw features, first order features, second order features, and combination of 1st

and 2nd order features. As can be seen in table 2, The Decision Tree model has a low R

Squared value of 0.191268249, indicating that it explains only 19.13% of the variance in

the data. The RMSE value of 24.66102748 suggests that the model's predictions have a

relatively high average error. The Random Forest model performs better than the Decision

Tree model, with an improved R Squared value of 0.442148767. The RMSE value of

20.48179991 is lower than that of the Decision Tree model, indicating better prediction

accuracy. The XGBoost model demonstrates the best performance among the three models,

with a higher R Squared value of 0.658448994 and a lower RMSE value of 16.02642683.

This indicates that the XGBoost model explains a larger portion of the variance in the data

and provides more accurate predictions compared to the other two models.

75

Table 2. ML methods using raw features

Decision Tree (DT)

R Squared RMSE

0.191268 24.66103

Random Forest (RF)

R Squared RMSE

0.442149 20.4818

XGBoost

R Squared RMSE

0.658449 16.02643

Table 3. ML methods using 1st order
features

Decision Tree (DT)

R Squared RMSE

0.448076 20.37271

Random Forest (RF)

R Squared RMSE

0.634719 16.57382

XGBoost

R Squared RMSE

0.857663 10.3459

Table 3 reports the results using first order features. The Decision Tree model shows an

improved performance compared to the raw features. The R Squared value is now

0.448075651, indicating that the model explains approximately 44.81% of the variance in

the data. The RMSE value of 20.37270503 suggests a lower average prediction error

compared to the raw features model. The Random Forest model performs even better than

the Decision Tree model for the 1st order features. The R Squared value increases to

0.634718882, indicating that the model explains approximately 63.47% of the variance in

the data. The RMSE value decreases to 16.57381672, suggesting improved prediction

accuracy compared to both the raw features and the Decision Tree model.

The XGBoost model shows the highest performance among the three models for the 1st

order features. The R Squared value is significantly higher at 0.857662784, indicating that

the model explains approximately 85.77% of the variance in the data. The RMSE value

decreases to 10.34589707, indicating the highest level of prediction accuracy among the

three models.

76

Table 3. ML methods using 2nd order features

Decision Tree (DT)

R Squared RMSE

0.235309 23.98015

Random Forest (RF)

R Squared RMSE

0.480075 19.77331

XGBoost

R Squared RMSE

0.634512 16.57851

The Decision Tree model shows a moderate improvement compared to the raw features.

The R Squared value is now 0.23530877, indicating that the model explains approximately

23.53% of the variance in the data. The RMSE value of 23.98015439 suggests a lower

average prediction error compared to the raw features model, but still relatively high. The

Random Forest model performs better than the Decision Tree model for the 2nd order

features. The R Squared value increases to 0.480074759, indicating that the model explains

approximately 48.01% of the variance in the data. The RMSE value decreases to

19.77330983, suggesting improved prediction accuracy compared to both the raw features

and the Decision Tree model.

The XGBoost model shows further improvement compared to both the Decision Tree and

Random Forest models for the 2nd order features. The R Squared value increases to

0.634512005, indicating that the model explains approximately 63.45% of the variance in

the data. The RMSE value decreases to 16.57850935, indicating improved prediction

accuracy compared to both the raw features and the Decision Tree model.

Table 4. 1st and 2nd order features combined

Decision Tree (DT)

R Squared RMSE

0.480283 19.76936

Random Forest (RF)

R Squared RMSE

0.629492 16.69198

XGBoost

R Squared RMSE

0.900191 8.663524

The Decision Tree model shows improved performance compared to both the raw features

and the 2nd order features as can be seen table 4 and figure 3. The R Squared value is now

0.480282502, indicating that the model explains approximately 48.03% of the variance in

the data. The RMSE value of 19.76935908 suggests a lower average prediction error

compared to both the raw features and the 2nd order features. The Random Forest model

77

performs better than the Decision Tree model for the combined 1st and 2nd order features.

The R Squared value increases to 0.629491582, indicating that the model explains

approximately 62.95% of the variance in the data. The RMSE value decreases to

16.69198402, suggesting improved prediction accuracy compared to both the raw features,

the 1st order features, and the 2nd order features.

The XGBoost model shows the highest performance among the three models for the

combined 1st and 2nd order features. The R Squared value is significantly higher at

0.900190624, indicating that the model explains approximately 90.02% of the variance in

the data. The RMSE value decreases to 8.663524149, indicating the highest level of

prediction accuracy among the three models for this feature combination.

Figure 3. Decision trees for first order features (left) and second order features (right)

The raw features consist of recorded keystroke data, including the key-press time and key-

release time for each key. These features provide the fundamental timing information of

the key events. However, they might lack higher-level patterns and relationships that can

be captured by more derived features. The first order features are derived from the raw data

by calculating durations and latencies between key events. Durations represent the length

of time a key is pressed, while latencies capture the time differences between key events.

These features provide local characteristics of typing behavior and can capture individual

key press patterns. The second order features are derived from the first order features and

provide additional insights into typing behavior. Minimum and maximum values indicate

the range of durations and latencies, while mean and standard deviation provide

information about the average and variability of these timing measures. Slope features

capture the overall pattern of typing, focusing on consistency in typing style. Spectral

information, obtained through wavelet transformation, can reveal frequency components

and further characterize the typing behavior.

The incorporation of first and second order features allows the models to capture more

nuanced patterns and relationships in the keystroke data. While Decision Trees provide a

baseline, Random Forest and XGBoost demonstrate superior performance due to their

78

ability to capture complex relationships. XGBoost, in particular, excels in leveraging the

combined information from all the features, resulting in the highest level of explanatory

power and prediction accuracy.

Conclusion
There is a growing need for robust and reliable user authentication methods in various

domains, including computer systems, mobile devices, and online platforms. Traditional

authentication methods such as passwords and PINs have limitations in terms of security

and user convenience. Keystroke dynamics offer a potential solution by leveraging unique

typing patterns inherent to individuals.

This research contributes to the field of keystroke dynamics by providing insights into the

effectiveness of different feature extraction techniques and machine learning models for

user authentication. The findings underscore the potential of keystroke dynamics as a

reliable biometric authentication method and can inform the development of more robust

and secure authentication systems in various domains.

One of the main limitations of this study is the size and composition of the dataset.

Although it contains keystroke data from 50 users attempting to enter the string 'Restaurant'

seven times, the relatively small number of users and repetitions may not fully capture the

diversity and complexity of real-world typing behavior. A larger and more diverse dataset

would provide a more comprehensive understanding of keystroke dynamics and potentially

yield more accurate and reliable results.

The study was conducted under controlled conditions, where users were specifically

instructed to enter the predefined string. This controlled environment may not fully

represent real-world typing scenarios, where users interact with various applications and

encounter different typing challenges. The study's findings might not generalize well to

real-world settings, where typing patterns can be influenced by factors such as distractions,

time pressure, or device variations. While these models demonstrated promising

performance, their generalization to other datasets and real-world scenarios should be

approached with caution. Different datasets with distinct characteristics and varying user

populations might yield different model performance. Further evaluation and validation of

the models on external datasets would strengthen the study's findings and establish the

robustness of the proposed approach.

This study focused on analyzing keystroke dynamics for user authentication, assuming that

individuals maintain consistent typing patterns over time. However, individual typing

behavior can vary due to various factors such as physical and cognitive conditions,

emotional states, or external influences. The study did not address the potential impact of

user variability on authentication performance. Understanding the extent of user variability

and its implications for keystroke dynamics-based authentication systems is an important

aspect that should be considered in future research.

References

[1] R. Oak, “A Literature Survey on Authentication Using Behavioural Biometric

Techniques,” in Intelligent Computing and Information and Communication, 2018,
pp. 173–181.

79

[2] K. S. Killourhy and R. A. Maxion, “Comparing anomaly-detection algorithms for
keystroke dynamics,” in 2009 IEEE/IFIP International Conference on Dependable
Systems & Networks, 2009, pp. 125–134.

[3] F. Monrose and A. D. Rubin, “Keystroke dynamics as a biometric for
authentication,” Future Gener. Comput. Syst., vol. 16, no. 4, pp. 351–359, Feb.
2000.

[4] C. Epp, M. Lippold, and R. L. Mandryk, “Identifying emotional states using keystroke
dynamics,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, Vancouver, BC, Canada, 2011, pp. 715–724.

[5] F. Bergadano, D. Gunetti, and C. Picardi, “User authentication through keystroke
dynamics,” ACM Trans. Inf. Syst. Secur., vol. 5, no. 4, pp. 367–397, Nov. 2002.

[6] S. Bleha, C. Slivinsky, and B. Hussien, “Computer-access security systems using
keystroke dynamics,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 12, pp.
1217–1222, Dec. 1990.

[7] P. H. Pisani and A. C. Lorena, “A systematic review on keystroke dynamics,” J. Braz.
Comput. Soc., vol. 19, no. 4, pp. 573–587, Jul. 2013.

[8] J. Ilonen, “Keystroke dynamics,” Advanced Topics in Information Processing–
Lecture, 2003.

[9] F. Monrose and A. Rubin, “Authentication via keystroke dynamics,” in Proceedings
of the 4th ACM conference on Computer and communications security, Zurich,
Switzerland, 1997, pp. 48–56.

[10] H. Crawford, “Keystroke dynamics: Characteristics and opportunities,” in 2010
Eighth International Conference on Privacy, Security and Trust, 2010, pp. 205–212.

[11] P. S. Teh, A. B. J. Teoh, and S. Yue, “A survey of keystroke dynamics biometrics,”
ScientificWorldJournal, vol. 2013, p. 408280, Nov. 2013.

[12] R. Giot, M. El-Abed, and C. Rosenberger, “Keystroke dynamics overview,” in
Biometrics, J. Yang, Ed. London, England: InTech, 2011.

[13] P. Lison, “An introduction to machine learning,” Language Technology Group (LTG),
2012.

[14] M. A. Veronin, R. Dixit, and R. P. Schumaker, “A Decision Tree Analysis of Opioid
and Prescription Drug Interactions Leading to Death Using the FAERS Database,” in
IIMA/ICITED Joint Conference 2018, 2018, pp. 67–67.

[15] O. Simeone, “A Brief Introduction to Machine Learning for Engineers,” Found.
Signal. Process. Commun. Netw., vol. 12, no. 3–4, pp. 200–431, 2018.

[16] G. Rebala, A. Ravi, and S. Churiwala, An introduction to Machine Learning. Berlin,
Germany: Springer, 2019.

[17] Y. Baştanlar and M. Ozuysal, “Introduction to machine learning,” Methods Mol.
Biol., vol. 1107, pp. 105–128, 2014.

[18] R. R. Dixit, “Predicting Fetal Health using Cardiotocograms: A Machine Learning
Approach,” Journal of Advanced Analytics in Healthcare Management, vol. 6, no. 1,
pp. 43–57, 2022.

[19] S. Badillo et al., “An Introduction to Machine Learning,” Clin. Pharmacol. Ther., vol.
107, no. 4, pp. 871–885, Apr. 2020.

[20] O. Simeone, “A Very Brief Introduction to Machine Learning With Applications to
Communication Systems,” IEEE Transactions on Cognitive Communications and
Networking, vol. 4, no. 4, pp. 648–664, Dec. 2018.

[21] Y. Kodratoff, Introduction to machine learning. Elsevier, 2014.

80

[22] R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang, and J. P. Campbell,
“Introduction to Machine Learning, Neural Networks, and Deep Learning,” Transl.
Vis. Sci. Technol., vol. 9, no. 2, p. 14, Feb. 2020.

[23] V. Kommaraju, K. Gunasekaran, K. Li, and T. Bansal, “Unsupervised pre-training for
biomedical question answering,” arXiv preprint arXiv, 2020.

