
30

Best Practices for Managing Java-Based

Production Systems
Omar Al-Farsi
Department of Computer Science, University of Qatar

Fatima El-Sayed
Department of Computer Science, University of Cairo

Abstract
Java has long been a cornerstone technology in enterprise computing, known for its

robustness, portability, and scalability. From web applications to large-scale enterprise

systems, Java provides a versatile platform that can adapt to various business needs.

Among the various frameworks available for building Java applications, Spring Boot has

gained significant popularity due to its ability to simplify development, streamline

configurations, and accelerate time-to-market. However, managing Spring Boot

applications in a production environment presents unique challenges that require a well-

structured approach to ensure they remain reliable, secure, and efficient. Spring Boot

Actuator is a powerful tool that provides production-ready features such as monitoring,

metrics, health checks, and more. It integrates seamlessly with Spring Boot applications,

offering endpoints that allow administrators to monitor and manage their applications

effectively. This paper aims to explore best practices for managing Java-based production

systems, with a particular emphasis on leveraging Spring Boot Actuator alongside other

tools and strategies. The structure of this paper includes several sections: continuous

monitoring using Spring Boot Actuator, scalability considerations, security best practices,

and performance optimization techniques. Each section provides detailed insights and

recommendations for managing Spring Boot applications in a production environment,

ensuring they can meet the demands of modern enterprise systems while minimizing

operational risks.

Keywords: Java application monitoring, performance surveillance, Spring Boot

Actuator, JVM optimization, holistic monitoring, application performance management,

real-time analytics, enterprise Java, network monitoring, memory management, thread

activity, distributed tracing, anomaly detection, microservices architecture, continuous

integration and deployment (CI/CD), automated testing, containerization, Docker,

Kubernetes, horizontal scaling, vertical scaling, load balancing, service discovery, circuit

breaker pattern, distributed caching.

Introduction
Java has long been a cornerstone technology in enterprise computing, known for its

robustness, portability, and scalability. Since its inception, Java has evolved into a

versatile and powerful programming language that is used to build a wide range of

applications, from small-scale desktop programs to large-scale, mission-critical enterprise

systems. Its platform independence, backed by the Java Virtual Machine (JVM), allows

developers to write code that can run on any system that supports Java, making it a

Article history:
Received:
Jan/12/2024
Accepted:
Mar/08/2024

.

31

favored choice for businesses seeking long-term solutions that are adaptable to changing

technological landscapes.

Among the various frameworks available for building Java applications, Spring Boot has

gained significant popularity due to its ability to simplify development, streamline

configurations, and accelerate time-to-market. Spring Boot is built on the comprehensive

Spring Framework, which provides a range of functionalities such as dependency

injection, transaction management, and aspect-oriented programming. Spring Boot, by

embracing convention over configuration, reduces the complexity typically associated

with configuring Spring applications, allowing developers to focus on building business

logic rather than dealing with boilerplate code and setup.

However, managing Spring Boot applications in a production environment presents

unique challenges that require a well-structured approach to ensure they remain reliable,

secure, and efficient. As organizations deploy more complex applications that serve a

growing number of users, the demands on these systems increase, necessitating robust

management strategies to ensure seamless operation. This includes not only maintaining

the performance and availability of the applications but also ensuring they are secure

from potential threats and capable of scaling to meet increasing loads.

Spring Boot Actuator is a powerful tool that provides production-ready features such as

monitoring, metrics, health checks, and more. It integrates seamlessly with Spring Boot

applications, offering endpoints that allow administrators to monitor and manage their

applications effectively. This paper aims to explore best practices for managing Java-

based production systems, with a particular emphasis on leveraging Spring Boot Actuator

alongside other tools and strategies. The comprehensive approach includes examining

continuous monitoring, scalability considerations, security best practices, and

performance optimization techniques. Each section provides detailed insights and

32

recommendations for managing Spring Boot applications in a production environment,

ensuring they can meet the demands of modern enterprise systems while minimizing

operational risks.

Monitoring Java-Based Production Systems with Spring Boot

Actuator
Monitoring is the cornerstone of effective system management. Without proper

monitoring, it's challenging to understand system performance, identify bottlenecks, or

troubleshoot issues in a timely manner. In the context of Java-based production systems,

particularly those built with Spring Boot, monitoring involves tracking a wide range of

metrics, from CPU and memory usage to application-specific parameters like thread

count, garbage collection, and response times. Effective monitoring not only provides

visibility into the health of the system but also plays a crucial role in proactive issue

detection, allowing for preemptive action before problems escalate.

The Role of Spring Boot Actuator in Monitoring

Spring Boot Actuator is an integral part of the Spring ecosystem, offering a wide array of

production-ready features that make monitoring and managing Spring Boot applications

more straightforward. It provides numerous built-in endpoints that expose application

metrics, health information, environment properties, and more. These endpoints can be

accessed via HTTP, JMX, or even through a custom UI, making it easier to keep track of

the application's status in real-time.

One of the key features of Spring Boot Actuator is its ability to expose detailed metrics

about the application. These metrics can include information about the JVM (like

memory usage and garbage collection), HTTP request statistics, and custom application

metrics. JVM metrics are particularly valuable in understanding how the underlying

system resources are being utilized, which is crucial for optimizing performance and

avoiding issues like memory leaks or excessive garbage collection pauses. By integrating

with popular monitoring tools like Prometheus, Micrometer, or Grafana, Spring Boot

Actuator allows for the collection and visualization of these metrics, enabling

administrators to monitor the application continuously. [1]

Automated Monitoring with Spring Boot Actuator

Spring Boot Actuator can be configured to automatically collect and expose metrics and

health information, which is crucial for maintaining the operational health of production

systems. For instance, the /metrics endpoint provides a detailed view of various metrics

that are important for understanding how the application is performing under load. This

includes detailed insights into how different components of the application are behaving,

such as database connections, thread pool usage, and response times for various services.

These insights are critical for diagnosing performance issues and understanding where

optimization efforts should be focused.

The Actuator’s /health endpoint is particularly valuable as it provides a comprehensive

health check of the application. It aggregates the status of various system components,

such as the database, message brokers, or any external services the application relies on.

This aggregated health status can be configured to include custom health indicators that

33

reflect the specific needs of the application. For instance, a custom health indicator might

check the availability of a third-party API that the application depends on, ensuring that

any issues with external dependencies are detected and reported immediately. This health

information can be used to trigger alerts or automate responses when certain components

fail or degrade in performance, ensuring that administrators can take action before the

user experience is impacted.

Moreover, Spring Boot Actuator supports custom metrics and health indicators, allowing

developers to expose specific metrics relevant to their application. For example, if an

application processes orders, developers might create a custom metric to track the

number of orders processed per minute or a health indicator that checks the status of the

payment gateway. These custom metrics can provide deeper insights into application

performance and are essential for monitoring business-critical functions. [2]

Log Management with Spring Boot Actuator

In addition to metrics and health checks, Spring Boot Actuator provides the /logfile

endpoint, which can be used to access the application’s log files. This is particularly

useful for troubleshooting issues in production without having to access the server

directly. Logs are a vital source of information when diagnosing issues, as they provide a

detailed record of application behavior over time. Administrators can view and analyze

logs through this endpoint, helping them quickly identify and resolve problems. This can

be particularly useful in distributed systems, where accessing logs from multiple servers

can be cumbersome.

Spring Boot Actuator also integrates with logging frameworks like Logback and Log4j2,

allowing for dynamic changes to logging levels at runtime. This means that in a

production environment, logging levels can be adjusted without restarting the application,

providing greater flexibility in managing log verbosity during different operational

conditions. For instance, logging can be increased temporarily to debug a specific issue,

then reduced again to minimize performance overhead once the issue has been resolved.

Moreover, logs can be centralized using tools like ELK (Elasticsearch, Logstash, Kibana)

or Splunk, which allow for advanced querying, visualization, and alerting based on log

data. Spring Boot Actuator’s integration with these logging frameworks enhances the

ability to monitor, analyze, and respond to issues in real-time, ensuring that the

application remains stable and performant. [3]

Alerting Mechanisms and Spring Boot Actuator

Spring Boot Actuator’s integration with monitoring systems enables robust alerting

mechanisms. By forwarding Actuator metrics to systems like Prometheus or Graphite,

organizations can set up alerts based on specific conditions. For instance, an alert could

be triggered if the memory usage exceeds a certain threshold, if the CPU load is

consistently high, or if the response time of a critical endpoint becomes unacceptably

high. These alerts can be configured to notify administrators through various channels,

such as email, SMS, or integration with incident management tools like PagerDuty or

OpsGenie.

34

The flexibility of Spring Boot Actuator in exposing custom metrics also means that

organizations can create highly tailored alerting rules that reflect the specific needs of

their application. For instance, if an application handles financial transactions, an alert

might be set up to trigger if the number of failed transactions exceeds a certain threshold,

indicating a potential issue with the payment gateway. This level of customization

ensures that alerts are both meaningful and actionable, reducing the risk of alert fatigue

while improving response times to actual issues.

Additionally, Spring Boot Actuator supports integration with advanced monitoring and

alerting platforms like Grafana and Prometheus, where custom dashboards can be created

to visualize application health in real-time. These dashboards can aggregate data from

multiple instances of the application, providing a comprehensive view of system

performance across the entire infrastructure. Alerts can be configured based on trends

observed in the dashboards, such as a gradual increase in response time or a slow but

steady increase in memory usage, allowing administrators to address issues before they

impact users.

Scaling Java-Based Systems

Scalability is a critical consideration in the design and management of modern software

systems. As businesses grow, their IT systems must scale to accommodate increasing

loads and ensure continuous availability and performance. Spring Boot applications, like

other Java-based systems, benefit from several strategies to achieve scalability, including

horizontal scaling, load balancing, and the use of cloud-native features. Ensuring that an

application can scale effectively is key to maintaining its performance and availability as

demand increases.

35

Horizontal Scaling with Spring Boot

Horizontal scaling, or scaling out, involves adding more instances of an application to

distribute the load. This approach is particularly effective for handling increased traffic,

as it allows the application to process more requests concurrently. Spring Boot

applications are particularly well-suited for horizontal scaling because they are typically

designed to be stateless or to externalize state management, making it easier to run

multiple instances in parallel. [4]

In a microservices architecture, Spring Boot applications can be deployed as independent

services that can be scaled independently. This modular approach to application design

allows organizations to scale specific services based on demand without having to scale

the entire application. For example, a microservice handling user authentication might

need to scale differently than a service handling product catalog searches, depending on

the load patterns.

Kubernetes, a popular container orchestration platform, is commonly used to manage the

deployment and scaling of Spring Boot applications. By packaging Spring Boot

applications as Docker containers, organizations can leverage Kubernetes’ powerful

scaling features, such as the Horizontal Pod Autoscaler, to automatically adjust the

number of application instances based on CPU usage, memory consumption, or custom

metrics exposed by Spring Boot Actuator. This automated scaling ensures that the

application can dynamically adapt to changes in demand, optimizing resource usage and

maintaining performance.

Load Balancing in Spring Boot Applications

Load balancing is essential for distributing incoming traffic across multiple instances of a

Spring Boot application. Effective load balancing not only helps in managing traffic

efficiently but also plays a crucial role in ensuring high availability and fault tolerance.

By using load balancers like NGINX, HAProxy, or cloud-native load balancers provided

by AWS, Azure, or Google Cloud, organizations can ensure that traffic is evenly

distributed and that no single instance becomes a bottleneck.

Spring Boot applications can be configured to work seamlessly with load balancers. For

instance, by using Spring Cloud, developers can implement client-side load balancing

with Netflix Ribbon or leverage the service discovery features of Spring Cloud Netflix to

dynamically route requests to different instances of a service. This dynamic routing is

particularly useful in cloud environments where application instances may come and go

based on scaling policies.

Additionally, by integrating Spring Boot Actuator with a load balancer, organizations can

implement intelligent routing decisions based on the health status of individual

application instances. For example, if an instance is marked as unhealthy by the

Actuator’s /health endpoint, the load balancer can automatically redirect traffic away

from that instance until it recovers. This ensures that users are always directed to healthy

instances, improving the overall reliability and user experience of the application.

Furthermore, advanced load balancing strategies such as session affinity (also known as

sticky sessions) can be implemented if necessary. While Spring Boot applications are

36

typically stateless, there may be scenarios where maintaining session state is important.

Load balancers can be configured to route all requests from a specific user session to the

same backend instance, ensuring consistency in user experience. However, this approach

should be used with caution, as it can lead to uneven load distribution.

Auto-Scaling with Spring Boot and Spring Cloud

Auto-scaling is a key feature in cloud environments that allows applications to scale

automatically based on demand. This capability is crucial for handling sudden spikes in

traffic, such as those experienced during a product launch or a seasonal sale, without the

need for manual intervention. Spring Boot applications can take full advantage of auto-

scaling capabilities provided by cloud platforms like AWS, Azure, or Google Cloud,

ensuring that they can scale in real-time to meet user demand.

Spring Cloud, a set of tools that builds on top of Spring Boot, provides comprehensive

support for auto-scaling. For example, Spring Cloud’s integration with Netflix OSS (such

as Eureka for service discovery and Ribbon for client-side load balancing) makes it easy

to implement auto-scaling in a microservices architecture. Eureka allows for dynamic

registration and discovery of services, enabling the system to automatically adjust as new

instances are brought online or taken offline.

By using Spring Cloud with Kubernetes, organizations can set up auto-scaling policies

that respond to metrics exposed by Spring Boot Actuator, such as request latency, CPU

usage, or memory consumption. This ensures that the application scales in real-time to

meet demand, optimizing resource usage and maintaining performance. Kubernetes also

supports vertical scaling (increasing the resources allocated to a single instance) and

horizontal scaling (increasing the number of instances), providing flexibility in how

scaling is approached. [5]

Moreover, cloud-native features like autoscaling groups in AWS, Azure Scale Sets, or

Google Cloud’s Instance Groups can be used to automatically scale the infrastructure

underlying the Spring Boot application. These features monitor the load on individual

instances and automatically adjust the number of instances based on predefined rules,

ensuring that the application remains responsive even under heavy load. This integration

between Spring Boot Actuator, Spring Cloud, and cloud-native tools provides a robust

solution for managing the scalability of Java-based systems in production environments.

Security in Java-Based Production Systems

Security is a top priority in any production environment, especially for applications that

handle sensitive data or provide critical services. As cyber threats become more

sophisticated and regulations around data protection more stringent, securing Java-based

production systems requires a multi-faceted approach that includes securing the

application code, protecting data in transit and at rest, and ensuring that access to the

system is tightly controlled. Spring Boot applications come with built-in security features

that can be enhanced and extended to meet the specific security requirements of an

organization.

37

Securing Spring Boot Applications

Spring Security, the de facto security framework for Spring applications, provides

comprehensive security features that can be easily integrated into Spring Boot

applications. It offers support for authentication, authorization, and protection against

common security vulnerabilities such as cross-site scripting (XSS), cross-site request

forgery (CSRF), and SQL injection. These vulnerabilities, if left unchecked, can be

exploited by attackers to gain unauthorized access to the system, steal data, or disrupt

operations.

By default, Spring Security can be configured to secure application endpoints, ensuring

that only authenticated users can access protected resources. This is crucial for protecting

sensitive parts of a Spring Boot application, such as administrative interfaces or APIs that

expose critical functionality. Spring Security supports a wide range of authentication

mechanisms, including form-based login, OAuth2, and single sign-on (SSO) via

integration with identity providers like Okta, Auth0, or Active Directory. This flexibility

allows organizations to implement the authentication strategy that best fits their security

requirements.

In addition to securing endpoints, Spring Security provides features for securing the

application against session fixation attacks, securing cookies, and enforcing secure

communication channels. Developers can also implement fine-grained access controls

using Spring Security’s powerful authorization features, which allow for the definition of

complex access rules based on user roles, permissions, and attributes. For instance, access

to certain endpoints can be restricted based on the user’s department, job title, or other

attributes, ensuring that users only have access to the resources they need. [6]

Encryption and Secure Communication

Securing communication channels is essential for protecting data in transit between the

client and the server. Data transmitted over the network is vulnerable to interception by

attackers, making it imperative to encrypt sensitive information to prevent unauthorized

access. Spring Boot makes it easy to implement HTTPS by configuring SSL/TLS

certificates in the application’s properties file. This ensures that all communication

between clients and the Spring Boot application is encrypted, protecting it from

eavesdropping and man-in-the-middle attacks. SSL/TLS also ensures data integrity,

preventing attackers from tampering with the data during transmission.

For data at rest, Spring Boot applications can leverage the Java Cryptography

Architecture (JCA) to encrypt sensitive data stored in databases or file systems. This is

particularly important for protecting sensitive information such as user credentials,

payment information, or personally identifiable information (PII) that may be stored in

the application’s database. Encryption of data at rest ensures that even if an attacker gains

access to the underlying storage, they cannot read or modify the data without the

encryption keys.

Additionally, Spring Security provides mechanisms for securely storing and managing

user credentials, including integration with secure hashing algorithms like bcrypt.

Passwords are hashed and salted before being stored, making it significantly more

difficult for attackers to retrieve the original passwords even if they gain access to the

38

hashed values. Spring Security also supports advanced security features like multi-factor

authentication (MFA), which adds an additional layer of protection by requiring users to

provide multiple forms of verification before accessing sensitive resources.

Access Controls and Security Auditing

Access control is another critical aspect of securing Spring Boot applications. Controlling

who has access to what parts of the application is essential for protecting sensitive data

and ensuring that users can only perform actions that they are authorized to perform.

With Spring Security, developers can implement fine-grained access controls using

annotations like @PreAuthorize and @Secured to restrict access to specific methods or

endpoints based on the user’s roles or permissions. These annotations allow for

declarative security, where the access rules are defined at the code level and enforced

automatically by the framework.

Spring Boot Actuator also plays a role in security by providing endpoints that can be

secured using Spring Security. For example, the Actuator’s /shutdown endpoint, which

allows administrators to gracefully shut down the application, should be protected to

prevent unauthorized access. Similarly, the /logfile endpoint should be secured to prevent

unauthorized access to sensitive logs, which could contain information that might be

useful to an attacker, such as error messages, stack traces, or system configuration details.

[7]

Security auditing is also supported by Spring Boot, which can be configured to log

security events such as login attempts, access denials, and other significant security-

related actions. These logs provide a detailed record of security-related activities within

the application, which can be invaluable for detecting potential security threats or for

investigating incidents after they occur. For example, by analyzing audit logs,

administrators can identify suspicious patterns of behavior, such as repeated failed login

attempts, which might indicate a brute-force attack. Integrating Spring Boot with security

information and event management (SIEM) systems can further enhance the ability to

detect and respond to security threats in real-time.

Performance Optimization

Performance optimization is critical for ensuring that Spring Boot applications can handle

the demands of production environments. As the user base grows and the complexity of

the application increases, it becomes essential to optimize both the application code and

the infrastructure to ensure that the application remains responsive, efficient, and cost-

effective. By optimizing the performance of these applications, organizations can

improve user experience, reduce operational costs, and ensure that the system can scale

effectively.

Code Optimization in Spring Boot Applications

The performance of a Spring Boot application is heavily influenced by the quality of its

code. Developers should follow best practices for writing efficient Java code, such as

minimizing object creation, using appropriate data structures, and avoiding expensive

operations in performance-critical paths. For instance, using collections with optimal

39

performance characteristics (like ArrayList for fast iteration or HashMap for quick

lookups) can have a significant impact on the overall performance of the application.

Spring Boot’s auto-configuration feature simplifies development by automatically

configuring many aspects of the application based on its dependencies. However, this

convenience can sometimes lead to suboptimal configurations if not carefully managed.

Developers should review the auto-configuration settings and disable any unnecessary

features that could impact performance. For example, if an application does not use an

embedded database, the default DataSource configuration can be disabled to save

resources.

Spring Boot also provides support for caching through the @Cacheable annotation,

which can be used to cache the results of expensive operations. Caching can dramatically

improve performance by reducing the need to repeatedly perform resource-intensive

operations, such as database queries or complex computations. Developers should

carefully analyze which parts of the application would benefit most from caching and

ensure that the cache is configured to expire entries appropriately to prevent stale data

from being served.

Caching and Performance Tuning

Caching is a powerful technique for improving the performance of Spring Boot

applications. In addition to method-level caching, Spring Boot supports HTTP caching,

which can be used to cache static content such as images, stylesheets, and JavaScript

files. This reduces the load on the server and speeds up the delivery of static assets to

clients. HTTP caching can be implemented using response headers such as Cache-

Control and ETag, which instruct browsers and intermediate proxies to cache resources

and reduce the number of requests that reach the server.

Spring Boot Actuator provides metrics that can be used to monitor the effectiveness of

caching strategies. For example, developers can track cache hit and miss rates to

determine whether the cache is being used effectively. If the cache miss rate is high, it

may indicate that the cache is not being populated correctly, or that the cache size is too

small to be effective. Monitoring cache performance metrics can help developers fine-

tune the cache configuration to maximize its benefits. [8]

Tuning the garbage collection (GC) settings of the JVM is another important aspect of

performance optimization. Garbage collection is the process by which the JVM reclaims

memory that is no longer in use, and it can have a significant impact on application

performance if not properly configured. Spring Boot applications can benefit from

selecting the appropriate GC algorithm and tuning the JVM’s memory settings based on

the application’s workload. For example, in applications with large heaps or long-running

processes, the G1 garbage collector may be more effective than the default Parallel GC,

as it can help reduce the occurrence of long GC pauses.

By monitoring GC metrics exposed by Spring Boot Actuator, administrators can identify

performance issues related to garbage collection and make necessary adjustments. For

example, if GC pauses are causing latency spikes, increasing the heap size or adjusting

the GC algorithm’s parameters may help mitigate the issue. Additionally, JVM profilers

40

such as VisualVM, YourKit, or JProfiler can be used to analyze memory usage and

identify memory leaks, which can further improve application performance.

Load Testing and Performance Profiling with Spring Boot

Load testing is essential for understanding how a Spring Boot application performs under

stress. Load testing involves simulating high levels of traffic and measuring the

application’s response to identify bottlenecks, performance degradation, and resource

utilization under peak conditions. Tools like Apache JMeter, Gatling, or LoadRunner can

be used to simulate high levels of traffic and measure the application’s performance

under various load conditions. These tools can generate detailed reports that highlight

how the application performs as the number of users increases, allowing organizations to

identify potential bottlenecks and optimize the application to handle increased demand.

Performance profiling is another critical aspect of performance optimization. Profiling

involves analyzing the application’s runtime behavior to identify areas where

performance can be improved. Spring Boot applications can be profiled using tools like

YourKit, JProfiler, or VisualVM to analyze CPU usage, memory allocation, and thread

activity. Profiling helps developers identify inefficient code paths, such as methods that

consume excessive CPU time or create large numbers of objects, and optimize them to

improve overall performance.

Spring Boot Actuator provides the /metrics endpoint, which can be used to gather

detailed performance metrics during load testing and profiling. These metrics can be

visualized using tools like Grafana, allowing administrators to monitor the application’s

performance in real-time and make data-driven decisions about optimizations. For

example, if load testing reveals that the application’s response time degrades significantly

under heavy load, the metrics can help identify whether the issue is related to CPU

saturation, memory exhaustion, or another factor, guiding the optimization efforts.

Moreover, integrating performance testing and profiling into the continuous

integration/continuous deployment (CI/CD) pipeline can ensure that performance

regressions are detected early in the development process. Automated performance tests

can be run as part of the build process, and profiling data can be collected and analyzed

after each build, providing continuous feedback on the impact of code changes on

application performance.

Conclusion

Managing Java-based production systems, particularly those built with Spring Boot, is a

complex but essential task that requires a comprehensive approach to ensure reliability,

security, and performance. These systems are at the core of many enterprise applications,

and their effective management is critical to the success of the business. By leveraging

Spring Boot Actuator alongside other best practices in monitoring, scalability, security,

and performance optimization, organizations can maintain their systems in peak

condition and reduce operational risks.

Spring Boot Actuator plays a pivotal role in providing the insights and tools needed to

monitor, manage, and optimize Spring Boot applications. It offers a wide range of

endpoints that expose valuable metrics, health information, and logs, making it easier to

41

maintain the operational health of production systems. By continuously monitoring these

metrics, organizations can gain real-time visibility into the performance and health of

their applications, allowing them to detect and address issues before they impact users.

[9]

By following the guidelines outlined in this paper, organizations can build and maintain

Spring Boot applications that are robust, scalable, secure, and optimized for performance.

This not only enhances the user experience but also contributes to the overall success of

the business by ensuring that critical systems are always available and operating at their

best. As the demand for more reliable, scalable, and secure applications continues to

grow, adopting these best practices will be essential for staying competitive in today’s

fast-paced digital landscape.

References

[1] Liu Y., "A survey on ai for storage.", CCF Transactions on High Performance

Computing, vol. 4, no. 3, 2022, pp. 233-264.

[2] Liu J., "Sora: a latency sensitive approach for microservice soft resource adaptation.",

Middleware 2023 - Proceedings of the 24th ACM/IFIP International Middleware

Conference, 2023, pp. 43-56.

[3] Jani, Y. "Spring boot actuator: Monitoring and managing production-ready

applications." European Journal of Advances in Engineering and Technology 8.1 (2021):

107-112.

[4] Chen Y., "A survey on industrial information integration 2016–2019.", Journal of

Industrial Integration and Management, vol. 5, no. 1, 2020, pp. 33-163.

[5] Furrer F.J., "Safety and security of cyber-physical systems: engineering dependable

software using principle-based development.", Safety and Security of Cyber-Physical

Systems: Engineering dependable Software using Principle-based Development, 2022,

pp. 1-537.

[6] Varghese B., "A survey on edge performance benchmarking.", ACM Computing

Surveys, vol. 54, no. 3, 2021.

[7] Xiong W., "Advances in security analysis of software-defined networking flow

rules.", Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, vol. 50, no. 6,

2023, pp. 172-194.

[8] Meiklejohn C., "Method overloading the circuit.", SoCC 2022 - Proceedings of the

13th Symposium on Cloud Computing, 2022, pp. 273-288.

[9] Raj P., "Cloud-native computing: how to design, develop, and secure microservices

and event-driven applications.", Cloud-native Computing: How to Design, Develop, and

Secure Microservices and Event-Driven Applications, 2022, pp. 1-331.

