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Abstract

Fog computing is a decentralized paradigm designed to bring computation and services closer to the edge of the network. It has emerged as a
promising solution for latency-sensitive applications. However, this architectural shift introduces a set of security challenges that are distinct
from traditional centralized cloud environments. Traditional centralized security models are often inadequate for fog environments due to their
reliance on centralized data processing, which contrasts with the distributed, heterogeneous, and latency-sensitive nature of fog computing.
Distributed Denial of Service (DDoS) attacks, unauthorized intrusions, data breaches, malware propagation, and privacy threats are problematic
in fog computing due to its decentralized structure, resource constraints, and the heterogeneous nature of fog nodes. This paper focuses on
identifying the critical security threats that fog computing environments face, with a special emphasis on DDoS attacks and other forms of
intrusion. In light of these challenges, the role of Artificial Intelligence (AI)-driven solutions in mitigating these security risks is also examined.
This study discussed how AI-based techniques, including machine learning (ML), deep learning (DL), and reinforcement learning (RL), offer
innovative approaches for real-time threat detection, anomaly recognition, and adaptive mitigation strategies. Deploying AI-based models in
fog environments presents challenges such as limited computational resources, latency concerns, and energy constraints. This paper also
discusses how AI can be used to enhance security in fog computing while addressing the inherent vulnerabilities of decentralized systems.
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Introduction

Fog computing, often referred to as edge computing, represents
a significant shift from the traditional centralized cloud model by
enabling data processing closer to where the data is generated.
This decentralized approach introduces a layered architecture,
with the fog layer acting as an intermediary between the cloud
and the edge devices. The key advantage of fog computing lies
in its ability to reduce latency and optimize bandwidth usage,
making it especially useful for applications that require real-
time or near-real-time responses. By processing data locally or
near the source, fog computing mitigates the delays associated
with transmitting data to distant cloud servers. This makes
it ideal for applications such as autonomous vehicles, smart
cities, healthcare systems, and industrial automation, where
the speed of data processing directly impacts performance and
safety (Zhang et al. 2018).

The architecture of fog computing can be viewed as compris-
ing three primary layers: the edge layer, the fog layer, and the
cloud layer. The edge layer consists of devices such as sensors,
actuators, cameras, and IoT devices that generate vast amounts
of data. These edge devices typically have limited computa-
tional power and are primarily responsible for capturing raw
data in real time. While some minimal processing may occur

at the edge, such as data filtering or aggregation, most of the
heavy lifting in terms of computation and analytics is handled
by the fog or cloud layers (Huang et al. 2017). The edge devices,
therefore, serve as the initial point of data collection but depend
on higher layers for more complex processing tasks.

Above the edge layer is the fog layer, which is central to
fog computing. This layer includes intermediary nodes such as
routers, gateways, switches, and local servers that are strategi-
cally located closer to the edge devices. These fog nodes possess
more significant computational power and storage capacity than
edge devices and can perform advanced data processing, analyt-
ics, and decision-making tasks. For example, in an autonomous
vehicle network, fog nodes might process real-time data from
vehicle sensors to detect obstacles, optimize routes, or initiate
safety measures without waiting for communication with a re-
mote cloud server. This ability to process data locally, within
milliseconds, is critical in applications where even slight delays
can have catastrophic consequences, such as in vehicle-to-vehicle
communication systems or healthcare monitoring devices. The
fog layer ensures that critical decisions are made closer to the
data source, reducing round-trip times to the cloud and enabling
more efficient use of bandwidth by transmitting only relevant
data to the cloud for further storage or analysis.
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Table 1 Applications of Fog Computing in Various Domains

Domain Key Technologies Data Sources Fog Computing Role Benefits

Smart Cities Intelligent Transportation,
Environmental Monitor-
ing, Energy Management

Road sensors, traffic cameras,
environmental sensors, en-
ergy meters

Local processing for
real-time decision-
making

Traffic optimization, air qual-
ity monitoring, energy distri-
bution (Yi et al. 2015a)

Autonomous
Vehicles

V2V and V2I communica-
tion, LiDAR, radar, GPS

Vehicle sensors, roadside in-
frastructure

Local processing for
split-second decision-
making

Obstacle avoidance, im-
proved traffic flow, reduced
bandwidth usage (Dastjerdi
et al. 2016)

Healthcare Wearable devices,
telemedicine systems

Heart monitors, glucose sen-
sors, blood pressure moni-
tors

Local data processing
for real-time health
monitoring

Early detection of health is-
sues (Quy et al. 2022), reliable
telemedicine services (Mut-
lag et al. 2019)

Industrial Au-
tomation

Industrial IoT devices, sen-
sors, cameras, robotic sys-
tems

Manufacturing equipment,
production line sensors

Real-time processing
for predictive main-
tenance and quality
control

Reduced downtime, en-
hanced productivity, im-
proved product quality

The cloud layer functions as a more centralized resource, pro-
viding large-scale storage, extensive computational capabilities,
and long-term data analysis. In fog computing architectures, the
cloud typically handles tasks that are less time-sensitive, such as
historical data analysis, machine learning model training, and
global network management. Data from fog nodes that is not
time-critical or that has already undergone initial processing
can be transmitted to the cloud for further refinement. For in-
stance, data from a factory’s sensors could be aggregated and
analyzed over time in the cloud to predict equipment failure
trends or optimize production processes. The cloud’s vast com-
putational resources make it well-suited for handling these kinds
of large-scale, non-real-time tasks, though the fog layer reduces
the cloud’s burden by offloading time-critical computations to
the edge.

In traditional cloud computing architectures, data generated
at the edge must be sent to a centralized data center for process-
ing, which introduces delays due to transmission distances and
network congestion. In contrast, fog computing processes data
closer to the source, drastically reducing the round-trip time for
data to travel from the edge to the cloud and back. This is impor-
tant in applications like autonomous driving, where even a few
milliseconds of delay in data processing can mean the difference
between avoiding or causing an accident (Dsouza et al. 2014).

Additionally, fog computing offers bandwidth optimization.
The ever-increasing number of IoT devices generating massive
amounts of data can overwhelm networks if all this data is
transmitted to the cloud for processing. By performing data
processing locally at the fog layer, only the most relevant and
refined data is transmitted to the cloud, reducing the load on
the network. For example, in a smart city, data from traffic
sensors can be processed locally to manage traffic lights in real
time, while only long-term traffic trends are sent to the cloud for
further analysis.

Another technical advantage is improved security and pri-
vacy. Fog computing enables localized processing, which can
limit the amount of sensitive data sent over potentially insecure
wide-area networks (WANs). In healthcare applications, for
example, patient data collected from wearable devices can be
processed locally at the fog layer to detect abnormalities with-

out transmitting sensitive health information to distant cloud
servers. This reduces the risk of data breaches and enhances
compliance with privacy regulations such as HIPAA (Health
Insurance Portability and Accountability Act).

Smart cities represent one of the most prominent applications
of fog computing, leveraging this architecture to manage large-
scale, real-time data from a wide array of urban systems. A smart
city integrates technologies such as intelligent transportation sys-
tems, environmental monitoring, and energy management, all
of which generate enormous quantities of data that must be
processed quickly to ensure efficient operation. Fog comput-
ing enables local processing of this data, allowing for real-time
decision-making without overloading centralized cloud servers.
For instance, in intelligent traffic management systems, data
from road sensors, traffic cameras, and connected vehicles can
be analyzed at fog nodes to optimize traffic light patterns, reduce
congestion, and enhance public safety. Similarly, fog nodes can
analyze data from environmental sensors to monitor air qual-
ity, noise levels, or water pollution in real time, allowing city
officials to respond quickly to potential health hazards.

In smart grids, fog computing enables the real-time moni-
toring and control of electricity distribution, helping to balance
supply and demand dynamically. Fog nodes installed at sub-
stations can process data from energy meters and sensors to
detect grid anomalies, optimize energy distribution, and inte-
grate renewable energy sources more effectively. By processing
data locally, fog computing reduces the communication latency
between different components of the grid, improving reliability
and reducing the risk of power outages.

Autonomous vehicles rely heavily on fog computing to han-
dle the enormous volumes of data generated by sensors such
as cameras, LiDAR, radar, and GPS systems. These sensors pro-
duce real-time data about the vehicle’s surroundings, including
information about nearby objects, road conditions, and traffic
patterns. The processing of this data must occur almost instanta-
neously to ensure the safe operation of the vehicle. Fog comput-
ing enables vehicles to process sensor data locally at fog nodes,
often located within the vehicle itself or at nearby infrastructure,
such as traffic lights or road signs. This local processing allows
autonomous vehicles to make split-second decisions, such as
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avoiding obstacles or adjusting speed based on traffic conditions,
without the delays that would occur if data were sent to a cloud
server for processing.

Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication systems also benefit from fog computing. In
these systems, vehicles and roadside infrastructure exchange
data to improve safety and traffic flow. Fog nodes situated along
roadways or within traffic management centers can process and
relay this data in real time, enabling faster decision-making and
reducing the likelihood of accidents. Moreover, fog comput-
ing reduces the amount of data that needs to be transmitted to
the cloud, decreasing the bandwidth required for V2V and V2I
communications.

In healthcare, fog computing supports critical applications
that require real-time monitoring and analysis of patient data.
Wearable devices such as heart monitors, glucose sensors, and
blood pressure monitors continuously generate patient data,
which must be processed in a timely manner to detect abnor-
malities and alert healthcare providers. By processing this data
locally at the fog layer, healthcare systems can identify poten-
tial health issues more quickly and intervene before conditions
worsen. For instance, a fog node could analyze data from a heart
monitor to detect irregular heartbeats and immediately notify a
doctor or emergency services, potentially saving a patient’s life.

Fog computing also plays a role in telemedicine, where pa-
tients in remote areas may lack reliable access to cloud-based
healthcare services. By deploying fog nodes in remote health-
care facilities, patient data can be processed locally, reducing
the reliance on distant cloud servers and ensuring that critical
medical information is analyzed quickly. This local processing
enhances the reliability of telemedicine systems and ensures that
patients in underserved areas receive timely care.

In industrial settings, fog computing is driving the trans-
formation of factories into smart, highly automated environ-
ments. Industrial IoT (IIoT) devices, such as sensors, cameras,
and robotic systems, generate large amounts of data that must
be processed in real time to monitor equipment, optimize pro-
duction processes, and detect potential faults. Fog computing
enables real-time data processing at the edge of the network,
allowing factories to respond quickly to changes in operating
conditions without relying on remote cloud servers.

For example, fog nodes can monitor data from manufacturing
equipment to detect signs of wear or malfunction, enabling
predictive maintenance. By identifying potential failures before
they occur, factories can reduce downtime, increase productivity,
and lower maintenance costs. Fog computing also supports
quality control systems by analyzing data from sensors and
cameras on the production line, ensuring that products meet
quality standards and reducing the risk of defects.

Problem Statement

As fog computing expands, the increase in connected devices
and fog nodes presents significant security challenges. Unlike
traditional cloud computing, where data is processed and man-
aged in centralized data centers with well-established security
mechanisms, fog computing operates in a decentralized man-
ner. This distributed architecture exposes the system to a range
of security threats, primarily due to the broader attack surface
and the complexity of securing nodes that are physically and
geographically dispersed (Abbasi and Shah 2017).

One of the primary concerns in fog computing is the het-
erogeneity of devices within the network. Fog environments

involve a wide variety of devices, from powerful gateways and
servers to resource-constrained IoT devices. This diversity cre-
ates inconsistencies in the ability to apply uniform security pro-
tocols. Many IoT devices, which often form the edge layer of
fog computing, are limited in terms of computational power,
memory, and energy resources. As a result, these devices are
typically incapable of executing advanced security mechanisms
such as robust encryption or intrusion detection systems. At-
tackers can exploit these less secure devices, gaining access to
the network through its weakest points. Moreover, the sheer
volume of devices complicates the management of security up-
dates, patches, and vulnerability assessments, making it difficult
to maintain consistent security across the entire system. The
diagram in figure 1 is illustrating the different layers in a fog
computing environment (Cloud Layer, Fog Layer, Edge Layer),
emphasizing the security challenges at each layer, focusing on
the vulnerabilities of the edge devices. The figure also illustrates
how attackers exploit the weakest devices in the system (Yi et al.
2015b).

Unlike centralized cloud data centers, which are typically
housed in secure facilities with restricted access, fog nodes are
often deployed in locations that are accessible to the public or
semi-public environments. Examples include smart traffic lights,
energy meters in smart grids, or industrial equipment located
in open areas. This proximity to end users and the physical
accessibility of the devices make them more vulnerable to tam-
pering, theft, or physical attacks. An attacker with physical
access to a fog node could manipulate hardware components
or install malicious software, compromising the node’s secu-
rity and potentially affecting the larger network. Additionally,
side-channel attacks, which exploit information leaked through
physical characteristics such as power consumption or electro-
magnetic emissions, can be a concern for fog nodes deployed
in unsecured environments. Figure 2 illustrates the physical
security risks associated with fog nodes deployed in public or
semi-public environments, such as smart traffic lights, energy
meters, and industrial equipment. The figure 2 also highlights
potential physical and side-channel attack vulnerabilities that
arise from their exposure and proximity to end users.

In a centralized cloud environment, data is processed in a
single location where stringent access control, encryption, and
monitoring protocols can be applied. In fog computing, data
is processed at multiple locations, including edge devices and
fog nodes, before being forwarded to the cloud. This creates
numerous potential points of failure where data can be inter-
cepted, tampered with, or exposed to unauthorized access. The
risk of data breaches increases as data moves between different
fog nodes and the cloud, especially if secure communication
channels are not consistently enforced across the system. Ensur-
ing data privacy and integrity across a dispersed fog network is
much more challenging compared to a centralized cloud system,
where all traffic and storage can be monitored from a single
control point (Wang et al. 2015).

In traditional cloud environments, authentication is typically
managed by a centralized authority, ensuring that all devices
and users are verified before accessing the system. However, in
a fog computing architecture, where thousands of devices and
fog nodes are distributed across a wide area, managing authenti-
cation becomes more complex. Each fog node must be capable of
verifying the legitimacy of the devices and data it interacts with,
which can lead to inconsistent trust models if not properly coor-
dinated. The lack of a centralized authentication authority in fog
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Cloud Layer
(Powerful Servers)

Fog Layer
(Gateways, Local Servers)

Edge Layer
(IoT Devices: Sensors, Actuators)

Data Flow

Data Flow

Robust Security Mech-
anisms Available
(Encryption, IDS)

Moderate Security
(Gateways capable of

complex protocols)

Limited Secu-
rity Mechanisms

(Weak encryption,
resource-constrained)

Potential Attackers Exploit Weakest Points in Edge Layer
(Vulnerable IoT Devices)

Figure 1 Security Concerns in Fog Computing: Heterogeneous Device Capabilities and Vulnerabilities
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Fog Node
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(Industrial Equipment)
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ing, Physical Attack)

Accessible in Semi-
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(Risk of Theft, Physical Attack)

Accessible in Open Area
(Risk of Hardware Manipulation)

Potential Side-Channel Attacks
(Exploiting Power Consumption, Electromagnetic Emissions)

Figure 2 Physical Security Challenges in Fog Computing: Public Accessibility and Risk of Tampering

computing raises the risk of compromised devices joining the
network, leading to issues such as data tampering, unauthorized
access, or the spread of malware.

In a DDoS attack, multiple compromised devices flood a tar-
get system with traffic, overwhelming its resources and causing
it to fail. The large number of interconnected fog nodes and

edge devices in a fog computing environment provides a wide
range of targets for attackers. Because fog nodes often operate
in less secure, distributed environments and may have limited
computational resources, they are more vulnerable to such at-
tacks than the heavily fortified data centers used in traditional
cloud computing. Once compromised, these nodes can be used
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as part of a botnet to launch attacks on other parts of the fog or
cloud infrastructure, leading to widespread disruption. Further-
more, since fog computing relies on real-time data processing
for critical applications like healthcare, industrial automation, or
autonomous vehicles, the consequences of a successful DDoS at-
tack could be catastrophic, potentially leading to system outages
or failures in safety-critical applications.

In a cloud environment, security patches can be deployed
centrally, ensuring all servers and applications are updated si-
multaneously. In contrast, in fog computing, updates must be
applied to a large number of geographically dispersed fog nodes
and edge devices. Ensuring that every device is kept up to
date with the latest security patches is logistically challenging,
especially in environments where devices are not consistently
online or are difficult to physically access. The delay or failure
to apply necessary patches in a timely manner leaves the entire
system exposed to vulnerabilities, as attackers can exploit out-
dated software or known security flaws in devices that have not
been updated.

In addition to technical vulnerabilities, privacy concerns are
also heightened in fog computing. With data being processed
and stored across multiple nodes close to the data sources, ensur-
ing that sensitive information is properly protected is more diffi-
cult. Personal or sensitive data may be exposed to more entities
along the processing chain, increasing the risk of unauthorized
access or data leakage. For instance, in healthcare applications,
data from patient monitoring devices might be processed at fog
nodes near hospitals or clinics. If these nodes are not adequately
secured, sensitive patient information could be intercepted by
attackers or unintentionally exposed to unauthorized personnel.

Data moving between fog nodes, edge devices, and the cloud
must be transmitted securely, as these communications are of-
ten a prime target for attackers. Man-in-the-middle (MITM)
attacks, where an attacker intercepts and potentially alters data
being exchanged between devices, are a significant threat in such
distributed systems. In the absence of end-to-end encryption
or secure communication protocols, data flowing between fog
nodes can be intercepted or compromised, leading to loss of
data integrity and confidentiality. Ensuring consistent security
across all communication channels, while maintaining low la-
tency for time-sensitive applications, is a major challenge in fog
computing environments.

Fog Computing Architecture and Unique Security Chal-
lenges

Fog computing operates as a decentralized computational layer
between IoT (Internet of Things) devices and centralized cloud
data centers, providing enhanced computational, storage, and
networking capabilities closer to the data sources. By process-
ing data locally on fog nodes—devices that vary in complexity
from edge servers to IoT sensors—fog computing reduces the
need for constant data transfer to the cloud. This proximity to
the network edge lowers latency, which is important for time-
sensitive applications such as autonomous vehicles, industrial
automation, and healthcare monitoring. Furthermore, fog com-
puting reduces bandwidth usage by filtering or processing data
closer to its origin, sending only necessary information to the
cloud. Despite these advantages, the architectural shift from
cloud to fog introduces a set of new, complex security challenges
that stem primarily from its decentralized, heterogeneous, and
dynamic nature (Lee et al. 2015) (Mukherjee et al. 2017).

The foremost issue in fog computing is decentralization,

which distinguishes it from traditional cloud computing, where
centralized control and security protocols are uniformly applied.
In a cloud environment, data and computational tasks are typi-
cally handled by a centralized set of servers within secure, phys-
ically protected data centers. This allows for the consistent im-
plementation of security measures, policies, and updates across
the entire infrastructure. In contrast, fog computing operates in
a distributed manner, with potentially hundreds or thousands of
fog nodes deployed across geographically dispersed locations.
These nodes operate independently, and their autonomy makes
it difficult to enforce uniform security policies. As a result, en-
suring that all nodes adhere to the same security standards is
a considerable challenge. Moreover, fog nodes may operate
in environments that are not physically secure, such as public
spaces, industrial sites, or remote locations. This exposes them
to a higher risk of physical tampering and unauthorized access.
Attackers can exploit these decentralized nodes to breach the
system, often targeting less secure or poorly monitored compo-
nents of the network. Without a centralized entity to monitor
and enforce security protocols, fog computing environments are
inherently more vulnerable to cyberattacks.

Another critical security issue in fog computing is the het-
erogeneity of nodes within the architecture. Fog nodes range
from highly capable edge servers with significant computational
power to resource-constrained devices, such as IoT sensors with
limited processing and storage capacity. This disparity creates
a fragmented environment where different devices require tai-
lored security mechanisms, further complicating the implemen-
tation of a unified defense strategy. For instance, a fog node in
the form of an edge server may be able to support robust encryp-
tion, firewalls, and intrusion detection systems. On the other
hand, an IoT sensor or small embedded device may lack the
necessary resources to implement the same security measures.
This makes the weaker nodes attractive targets for attackers,
who can use them as entry points to the larger network. More-
over, heterogeneity in hardware and software platforms creates
compatibility issues for security solutions. Fog nodes often run
on diverse operating systems, communication protocols, and
network topologies, making it difficult to deploy a single secu-
rity strategy that works across the entire infrastructure. This
uneven security posture across fog nodes significantly increases
the likelihood of breaches, as attackers are more likely to find
vulnerable entry points (Lee et al. 2015).

Fog computing environments often include mobile nodes,
such as those found in vehicles, drones, or wearable devices,
which continuously change their network location and connec-
tivity. The high mobility of these nodes creates dynamic network
topologies, introducing additional complexities in maintaining a
secure connection. Mobile fog nodes must establish secure com-
munication with other nodes and devices as they move through
different network regions, each of which may have varying se-
curity policies and levels of trust. Ensuring the integrity and
confidentiality of data exchanged between mobile nodes and the
rest of the fog network is a significant challenge, especially when
these nodes encounter fluctuating network conditions, such as
weak signal strength or intermittent connectivity (Ni et al. 2017).
Attackers can exploit these conditions, targeting mobile nodes
during handoffs or when the connection is weakest, to intercept
or manipulate data. The frequent movement of fog nodes also
complicates the application of traditional security techniques
that rely on static configurations, such as fixed encryption keys
or predefined access control policies. As a result, mobile nodes
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are often more vulnerable to man-in-the-middle attacks, eaves-
dropping, and unauthorized access than stationary devices.

Another major concern in fog computing is the increased
attack surface that results from the vast number of distributed
fog nodes. In a traditional cloud environment, the attack surface
is primarily limited to the data centers and the communication
channels between the client and the cloud. However, in fog com-
puting, the attack surface expands significantly as each fog node
represents a potential point of vulnerability. With fog nodes
deployed across diverse and often unsecured locations, attack-
ers have numerous entry points through which they can launch
attacks. These attacks can range from Distributed Denial of Ser-
vice (DDoS) attacks, where compromised nodes flood a target
node with traffic, to malware infections that spread across inter-
connected nodes. Additionally, the physical deployment of fog
nodes in public or less-controlled environments exposes them to
tampering, where malicious actors can physically compromise
the devices to gain unauthorized access or manipulate data. As
the number of fog nodes increases, so does the challenge of mon-
itoring and securing all potential entry points, making it harder
to detect and mitigate threats in real-time (Kunal et al. 2019).

The nature of applications in fog computing introduces low-
latency and real-time constraints, which add another layer
of complexity to security. Many fog computing applications,
such as real-time healthcare monitoring, smart grids, and au-
tonomous driving systems, require immediate data processing
and response. Any delay caused by security mechanisms could
degrade the performance of these latency-sensitive applications,
leading to undesirable consequences, such as reduced decision-
making accuracy or system malfunctions. Traditional security
protocols, such as computationally intensive encryption algo-
rithms or extensive logging and monitoring systems, often in-
troduce latency, making them unsuitable for real-time environ-
ments. As a result, there is a constant trade-off between ensuring
robust security and maintaining the performance characteristics
that fog computing was designed to enhance. Security solutions
that introduce significant overhead in terms of processing time
or network traffic can disrupt the real-time functioning of fog
applications, creating an additional challenge for designing and
implementing effective security strategies.

Fog computing systems must address the resource-
constrained nature of many nodes. Unlike cloud data centers,
which have vast computational resources, many fog nodes, IoT
devices, operate with limited processing power, memory, and
energy. This resource limitation makes it difficult to implement
complex security mechanisms on all fog nodes. For example,
while data encryption is a fundamental security measure, the
computational cost of encryption can be prohibitive for small IoT
devices that must prioritize power efficiency. Similarly, resource-
constrained devices may not be able to support continuous mon-
itoring or advanced anomaly detection algorithms, leaving them
more vulnerable to attacks. Attackers can exploit these resource
limitations by overwhelming fog nodes with computationally
intensive tasks or launching energy-draining attacks that cause
the devices to shut down. This challenge is compounded by the
fact that fog computing environments often operate in harsh or
remote conditions where power and connectivity are limited,
further restricting the ability of nodes to perform continuous
security checks or updates (Khan et al. 2017).

Table 2 Comparison of Security Challenges in Fog and Cloud
Computing

Security Challenge Fog Computing Cloud Computing

Decentralization Highly decentralized Centralized control

Node Heterogeneity High (IoT to edge
servers)

Low (homogeneous
data centers)

Attack Surface Large and distributed Centralized

Latency Sensitivity High Moderate to low

Mobility High (mobile nodes) Low (stationary data
centers)

Resource Con-
straints

Significant Minimal

Table 3 Security Issues and Factors in Fog Computing

Security Issue Exacerbating Factors

Decentralization Lack of centralized control, geo-
graphic dispersion

Heterogeneity of Nodes Varying computational power, in-
compatible platforms

High Mobility Constantly changing network
topologies, weak handoffs

Increased Attack Surface Numerous vulnerable nodes, public
deployment

Low Latency Requirements Strict performance constraints, real-
time processing

Resource Constraints Limited power and processing capa-
bilities

Main Security Threats in Fog Computing

1. Distributed Denial of Service (DDoS) Attacks
Distributed Denial of Service (DDoS) attacks present a significant
challenge to fog computing environments due to the decentral-
ized and resource-constrained nature of fog nodes. Fog comput-
ing extends cloud services closer to end-users by distributing
resources across a wide array of devices and nodes located near
the network’s edge. While this architecture provides benefits
such as reduced latency and enhanced scalability, it also ex-
poses vulnerabilities that make fog systems susceptible to DDoS
attacks. By overwhelming these nodes with excessive traffic
or computational requests, attackers can severely degrade the
performance of fog services, rendering them unavailable to legit-
imate users. Unlike traditional cloud architectures, fog systems
typically lack the centralized security controls and expansive
resources available to counteract such attacks, heightening the
impact of DDoS vectors on overall service availability (Thota
et al. 2018) (Zhang et al. 2018).

A DDoS attack involves distributing malicious traffic from
multiple sources to a targeted network, system, or application
with the goal of overwhelming its processing or bandwidth
capacity. In a fog computing context, this can manifest in sev-
eral ways, primarily through network flooding attacks, resource
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Figure 3 AI-based DDoS Mitigation in Fog Environments: Traffic Filtering and Anomaly Detection

exhaustion, and application-level disruptions. Each of these
vectors exploits inherent weaknesses in fog nodes, their limited
computational resources, storage capacity, and network band-
width. The distributed and heterogeneous nature of fog nodes
further complicates the defense against DDoS attacks, as each
node may be vulnerable to different types of attacks depending
on its specific configuration, hardware, and location within the
network topology (Kunal et al. 2019).

Network flooding attacks are one of the most common forms
of DDoS attacks in fog computing. Attackers attempt to inun-
date the fog network with a massive volume of data packets,
overwhelming the bandwidth available to the fog nodes. This
form of attack, often executed through protocols such as UDP
flooding, SYN flooding, or DNS amplification, targets the lim-
ited network capacity of fog nodes, leading to congestion and
subsequent service degradation. Since fog nodes typically op-
erate with constrained bandwidth to prioritize localized data
processing, a network flooding attack can quickly incapacitate
their ability to handle incoming and outgoing traffic, effectively
disrupting communication between the fog nodes, end-users,
and the cloud infrastructure.

Unlike centralized cloud data centers, fog nodes are generally
low-power devices with limited computational capabilities, such
as embedded systems, IoT gateways, and edge routers. Attack-
ers can exploit this constraint by generating resource-intensive
requests that quickly exhaust the fog nodes’ CPU, memory, or
storage resources. When a fog node becomes overloaded, it can
experience performance degradation or complete system failure,
resulting in the disruption of services that depend on the node
for local processing, storage, or data forwarding. This form of
attack is devastating in real-time applications, such as smart
cities or autonomous vehicles, where service delays or outages
can lead to critical failures or safety risks (Huang et al. 2017).

Application-level DDoS attacks target specific applications
running on fog nodes rather than the underlying network infras-
tructure. These attacks exploit vulnerabilities in the applications
themselves, such as unoptimized code, inefficient algorithms,
or unprotected endpoints, to consume an excessive amount of
computational resources. For instance, attackers may target
smart city sensors that rely on fog nodes for data aggregation
and processing, overwhelming the application with spurious
requests or malformed data that cause it to malfunction or be-
come unresponsive. This form of attack is difficult to mitigate
because it operates at a higher layer in the network stack, making
traditional network-based defenses less effective.

Given the scale, diversity, and distributed nature of fog en-

vironments, the use of AI-based techniques has become essen-
tial in combating DDoS attacks. Traditional DDoS mitigation
approaches, which rely on fixed traffic rules or manual inter-
ventions, are often inadequate in the dynamic and resource-
constrained landscape of fog computing. Machine learning (ML)
and artificial intelligence (AI) provide the ability to detect and
respond to DDoS attacks in real-time, significantly reducing the
potential damage that can be inflicted on fog nodes and their as-
sociated services. AI techniques can analyze patterns of network
traffic, user behavior, and resource consumption to differentiate
between legitimate users and malicious actors.

Traffic filtering is one AI-driven strategy that is effective in
fog environments. By training machine learning models to rec-
ognize common patterns associated with DDoS attacks, such
as unusually high traffic volumes or abnormal packet headers,
fog nodes can automatically classify incoming traffic and block
malicious packets before they reach their intended target. These
models are often trained on large datasets of historical network
traffic, allowing them to identify both known attack vectors and
emerging threats. Traffic filtering is especially important in fog
computing, where nodes must make rapid decisions with mini-
mal computational overhead to prevent service degradation.

Anomaly detection is another AI-based technique that is
widely used for DDoS mitigation in fog computing. Unlike
traditional signature-based detection systems, which rely on
predefined rules to identify threats, anomaly detection models
are trained to recognize deviations from normal traffic patterns.
When a DDoS attack begins, the surge in malicious traffic often
causes noticeable shifts in the statistical properties of network
traffic, such as increased packet loss, abnormal latency, or sud-
den spikes in bandwidth usage. Machine learning algorithms
can detect these anomalies in real-time and trigger automated
defense mechanisms, such as rate limiting or traffic rerouting, to
mitigate the attack’s impact on the fog network.

Collaborative defense mechanisms represent a more ad-
vanced AI-based strategy for mitigating DDoS attacks in fog
computing. In these systems, multiple fog nodes share threat
intelligence and defensive strategies in real-time, creating a de-
centralized and adaptive security framework. By pooling their
resources and knowledge, fog nodes can develop a collective
defense strategy that is more robust and resilient than the sum
of its parts. AI algorithms play a crucial role in this process by
facilitating the rapid exchange of information between nodes
and optimizing the overall defense strategy based on the lat-
est data. For example, if one node detects an emerging attack
pattern, it can immediately notify other nodes in the network,
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allowing them to preemptively adjust their defenses. This form
of collaborative defense is valuable in fog computing, where the
distributed nature of the architecture makes it difficult to deploy
centralized security controls.

To illustrate the role of AI in DDoS mitigation in fog com-
puting, consider the following table, which summarizes various
AI-based techniques and their specific applications in defending
against different types of DDoS attacks:

The ability to rapidly detect and mitigate DDoS attacks is
critical in fog computing due to the time-sensitive nature of
many applications that rely on these systems. For instance, in
smart city environments, fog nodes process data from a variety
of sensors and IoT devices, enabling real-time decision-making
for tasks such as traffic management, energy distribution, and
public safety. A DDoS attack targeting these nodes could lead
to widespread service disruptions, undermining the reliability
of the entire smart city infrastructure. Therefore, AI-driven
defense mechanisms must operate with minimal latency and
computational overhead to ensure the continuous availability of
fog services (Guan et al. 2018).

Reinforcement learning represents another promising AI-
driven approach to DDoS mitigation in fog computing. In this
method, fog nodes learn to adapt their defense strategies over
time by interacting with the network environment. Using re-
inforcement learning algorithms, fog nodes can identify which
defensive actions are most effective against specific types of at-
tacks, allowing them to refine their responses based on evolving
attack patterns. For example, a fog node might initially imple-
ment a simple traffic filtering rule but gradually improve its
defense strategy by learning from the outcomes of previous at-
tacks. This adaptive approach enables fog nodes to stay ahead
of attackers, who are continually developing new techniques to
bypass traditional security measures.

2. Unauthorized Access and Intrusions
Unauthorized access and intrusions represent significant threats
within fog computing, where attackers seek to manipulate, dis-
rupt, or exfiltrate sensitive data by exploiting vulnerabilities in
fog nodes. These intrusions can also facilitate more extensive
infiltration of the network, enabling adversaries to compromise
additional nodes, spread malware, or disable critical services.
Fog computing, with its decentralized nature and reliance on het-
erogeneous devices, presents numerous attack surfaces (Alharbi
et al. 2018) (Stojmenovic et al. 2016). The security challenges are
magnified by the limited computational resources available on
many participating devices, making the prevention and detec-
tion of unauthorized access a complex and urgent issue.

Several prevalent techniques are employed by attackers to
gain unauthorized access to fog computing systems, each exploit-
ing specific vulnerabilities inherent in the architecture. These
techniques are effective due to the real-time processing demands,
resource constraints, and distributed nature of fog computing,
which create ample opportunities for exploitation.

A major form of attack is the man-in-the-middle (MitM) at-
tack, which capitalizes on insecure communication channels
between fog nodes and connected IoT devices. Since fog nodes
frequently communicate over open or weakly encrypted net-
works, attackers positioned between the devices can intercept,
modify, or steal data being transmitted. In fog environments,
where data may include sensitive information such as financial
transactions, healthcare records, or industrial control signals,
MitM attacks can have damaging consequences. Such attacks

can persist undetected for long periods, allowing adversaries to
subtly alter communications, gradually exfiltrate data, or inject
malicious payloads into the network, potentially undermining
the integrity of the entire system.

Many IoT devices that form the endpoints of fog computing
systems are designed with minimal security capabilities due to
their resource limitations. These devices, which may include
sensors, actuators, and other peripheral devices, are often de-
ployed in large numbers and operate in diverse and sometimes
hostile environments. Once an attacker successfully compro-
mises one of these devices, they can use it as a gateway to access
the broader fog network. The compromised device can serve
as a launch point for further attacks, allowing the adversary to
infiltrate additional fog nodes, propagate malware, or disrupt
services. The exploitation of edge devices highlights the fragility
of fog computing networks, where the compromise of even a
single, seemingly low-priority device can have cascading effects
throughout the entire infrastructure.

Many fog nodes, those operating in resource-constrained en-
vironments, utilize inadequate or outdated authentication meth-
ods. These mechanisms may rely on static passwords, weak
encryption, or simplified identity verification protocols, all of
which make it easier for attackers to bypass authentication barri-
ers. Once authenticated, the attacker can assume the identity of
legitimate users or devices, gaining full access to the system’s
capabilities and data. In the context of fog computing, where
sensitive data and critical services are handled in real-time, the
risks associated with weak authentication are magnified. Unau-
thorized access to fog nodes can lead to severe breaches of data
confidentiality, integrity, and availability, undermining the trust-
worthiness of the entire network.

To address the vulnerabilities associated with unauthorized
access, the deployment of AI-based intrusion detection systems
(IDS) came as a promising solution for fog computing environ-
ments. These systems leverage advanced machine learning and
deep learning models to identify suspicious activity and poten-
tial intrusions in real-time. Given the diverse range of devices,
data types, and communication protocols involved in fog com-
puting, traditional security measures often fall short. AI-based
IDS, however, are capable of analyzing vast amounts of data
and detecting complex patterns that may indicate an ongoing
intrusion or anomaly.

Convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) have demonstrated considerable effectiveness
in identifying abnormal behavior in fog networks. These mod-
els can process large streams of data from various fog nodes
and detect subtle deviations from established behavioral norms,
which may signal the presence of an intrusion. For instance, an
IDS may analyze network traffic patterns and identify unusual
communication flows between nodes or detect anomalies in data
payloads that suggest tampering. Given the real-time nature
of fog computing, these systems must operate with minimal
latency while maintaining high accuracy in detecting threats.

AI-driven solutions extend beyond detection to also include
active prevention measures against unauthorized access. One
of the key approaches involves behavioral analysis. Machine
learning algorithms are trained on historical data to understand
the normal behavior of both users and devices within the fog net-
work. Once this baseline is established, the system continuously
monitors ongoing activity, raising alerts or initiating defensive
actions when significant deviations from normal behavior are
detected. This type of behavioral analysis is effective in fog
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Table 4 AI-based Techniques for DDoS Mitigation in Fog Computing

AI-based Technique Application in Fog Computing

Traffic Filtering Classification of incoming traffic based on known attack patterns, allow-
ing fog nodes to block malicious packets and reduce congestion.

Anomaly Detection Real-time identification of unusual traffic patterns that signal the start of
a DDoS attack, enabling automated defense responses such as traffic rate
limiting or rerouting.

Collaborative Defense Coordination of multiple fog nodes to share threat information and opti-
mize collective defense strategies using AI algorithms.

Reinforcement Learning Adaptive defense strategies learned over time by fog nodes to respond
to evolving DDoS attack patterns.

Table 5 Comparison of Traditional vs. AI-driven DDoS Mitigation Techniques

Technique Traditional Approach AI-driven Approach

Traffic Classification Rule-based filtering based on static
signatures

Dynamic classification using ma-
chine learning models trained on his-
torical attack data

Anomaly Detection Manual identification of abnormal
traffic patterns

Automated detection using real-
time machine learning algorithms

Response Adaptation Fixed defensive measures, often pre-
defined

Adaptive defense strategies based
on reinforcement learning and real-
time feedback

Collaboration Limited or no information sharing
between nodes

Real-time collaborative defense
mechanisms facilitated by AI algo-
rithms

computing, where the diversity of connected devices makes it
difficult to rely on static security rules or signatures to identify
threats.

In addition to behavioral analysis, real-time authentication
systems enhanced by AI offer another layer of protection against
unauthorized access. These systems employ continuous authen-
tication methods that go beyond traditional login credentials.
For example, AI-based systems can authenticate users based on
their interaction patterns, such as typing speed, touch behavior,
or mouse movements. By continuously monitoring and authen-
ticating users and devices throughout a session, the system can
detect unauthorized access attempts that may occur after an
initial login or when a legitimate user’s credentials have been
compromised.

Another crucial aspect of AI-driven security solutions is the
facilitation of threat intelligence sharing across fog networks.
Given the distributed nature of fog computing, individual nodes
may be more vulnerable to isolated attacks. However, when
fog nodes collaborate and share information about intrusion
attempts, they can collectively enhance the overall security of
the network. AI systems can automate the process of threat
intelligence sharing, enabling fog nodes to quickly exchange
data about suspicious activity, attack patterns, and mitigation
strategies. This collaborative approach not only improves the
speed and efficiency of threat detection but also enables the
network to adapt more rapidly to security threats.

The integration of AI into fog computing security is not with-
out its challenges. Training machine learning models to accu-

rately identify threats requires access to large amounts of data,
which may not always be readily available in a fog environment.
Moreover, adversaries are continually developing more sophis-
ticated techniques to evade detection by AI-based systems, ne-
cessitating ongoing updates to algorithms and models. Despite
these challenges, AI-driven intrusion detection and prevention
systems represent a significant advancement in protecting fog
computing infrastructures from unauthorized access.

To further illustrate the efficacy of AI in securing fog net-
works, recent research has demonstrated that hybrid models,
combining both supervised and unsupervised learning tech-
niques, can offer improved accuracy in detecting intrusions.
Supervised learning models are effective when labeled datasets
are available, allowing the system to learn from known attack
patterns. Unsupervised learning models, on the other hand,
are adept at identifying novel threats by detecting anomalies
in data without prior knowledge of attack signatures. By inte-
grating these approaches, fog networks can be fortified against
both known and emerging threats, enhancing their resilience to
unauthorized access.

3. Data Breaches and Privacy Threats
Fog computing, as a decentralized extension of cloud comput-
ing, often operates at the edge of networks, where sensitive
data is processed and transmitted closer to the point of gener-
ation. This architecture offers significant benefits in terms of
low-latency processing and efficient bandwidth utilization, for
time-sensitive applications such as healthcare, smart cities, and
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Fog Environment

AI-Based IDS

Behavioral Analysis

Real-Time Authentication

Unauthorized Access Prevention

Data Flow

Deep learning models
(e.g., CNNs, RNNs)

analyze data in real-time
for intrusion detection.

Behavioral analysis
learns normal behavior,

detecting deviations.

Continuous real-time
authentication verifies

users based on behavior.

Figure 4 AI-based Intrusion Detection in Fog Networks: Behavioral Analysis and Real-Time Authentication

Intrusion Technique Description

Man-in-the-Middle (MitM)
Attack

Exploits insecure communication channels to intercept, alter, or steal data
transmitted between fog nodes and IoT devices.

Compromised Edge Devices Attackers gain access to the fog network by compromising vulnerable
IoT devices, using them as gateways for broader network infiltration.

Weak Authentication Mecha-
nisms

Exploits inadequate or outdated authentication methods to gain unau-
thorized access to fog nodes.

Table 6 Common Intrusion Techniques in Fog Computing

AI-Based Security Solution Functionality in Fog Networks

Behavioral Analysis Monitors and analyzes the normal behavior of users and devices,
raising alerts when deviations occur.

Real-Time Authentication Continuously authenticates users and devices based on behavioral
biometrics, reducing the risk of unauthorized access.

Threat Intelligence Sharing Facilitates collaboration between fog nodes, allowing the ex-
change of threat data to enhance overall network security.

Table 7 AI-Driven Security Solutions for Fog Computing

autonomous vehicles. However, the proximity of fog nodes to
IoT devices and other edge components presents critical vulner-
abilities. A breach in a fog network could lead to the exposure
of personal or organizational data, potentially violating privacy
regulations like the General Data Protection Regulation (GDPR)
or the California Consumer Privacy Act (CCPA), and compro-
mising mission-critical systems. The decentralized nature of fog
computing, combined with the diversity of devices and nodes in-
volved, complicates efforts to secure data and prevent breaches,
underscoring the need for advanced techniques to mitigate these
risks.

Data breaches in fog computing environments can occur un-
der various scenarios, each exposing weaknesses in the architec-
ture or security protocols. These breaches can arise from insuffi-
cient encryption, poor access controls, or direct manipulation of

data integrity. Each scenario illustrates the vulnerabilities inher-
ent in fog computing, when deployed in resource-constrained
environments where security measures are often deprioritized
in favor of performance or efficiency (Bhat and Kavasseri 2023).

One of the primary concerns is insufficient encryption. En-
cryption is a fundamental security measure that ensures data re-
mains secure during transmission and storage. However, many
fog nodes, especially those with limited computational resources,
may rely on weak or outdated encryption algorithms, or worse,
no encryption at all. In these cases, attackers can easily inter-
cept data while it is being transmitted between fog nodes and
IoT devices. This lack of robust encryption becomes especially
problematic when the data being transmitted contains sensitive
information, such as medical records, financial data, or propri-
etary industrial information (Stojmenovic and Wen 2014). A
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Data Access Monitoring AI-Based Anomaly Detection

Automated Threat Hunting

AI-Driven Encryption

Data Protection

Monitors Access

AI models detect ab-
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for potential breaches.
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for threats, analyzing
logs and system data

to detect breaches early.
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Figure 5 AI Techniques for Preventing Data Breaches: Anomaly Detection, Automated Threat Hunting, and AI-Driven Encryption

breach that exploits weak encryption could allow adversaries
to access, copy, or even alter the data, leading to severe privacy
violations and operational disruptions.

Another common breach scenario stems from weak access
controls. Access control mechanisms are crucial for ensuring
that only authorized users and devices can access data stored
or processed at fog nodes. However, many fog networks em-
ploy inadequate access control protocols, in edge environments
where simplicity and low cost often take precedence over se-
curity. Without strong authentication and authorization proce-
dures in place, unauthorized users can gain access to sensitive
data, including personal information, intellectual property, or
critical operational data. The consequences of weak access con-
trols are far-reaching, as they allow attackers to not only steal
data but also potentially take control of fog nodes, further com-
promising the integrity of the entire network (Rahman and Wen
2018).

Data integrity attacks represent another significant threat in
fog computing environments. In this scenario, attackers target
the integrity of the data being processed at fog nodes, altering it
to introduce false information into the system. Such attacks can
have catastrophic consequences, in applications where accurate
data is critical to decision-making. For example, in healthcare
monitoring systems, compromised data could lead to incorrect
diagnoses or treatments, endangering patient lives. Similarly, in
traffic control systems, data integrity attacks could disrupt the
flow of traffic, leading to accidents or gridlock. These attacks are
insidious because they may not always be immediately apparent,
allowing incorrect or manipulated data to propagate through
the network and influence decisions or actions based on false
information.

As traditional security mechanisms often struggle to cope
with the dynamic and distributed nature of fog computing, arti-
ficial intelligence (AI) has emerged as a powerful tool for identi-
fying and preventing data breaches. AI’s ability to process vast
amounts of data in real-time, detect patterns, and adapt to new
threats makes it well-suited to the unique challenges of securing
fog networks.

One of the key applications of AI in preventing data breaches
is anomaly detection in data access. AI models can be trained
to learn normal patterns of data access across the fog network,
identifying legitimate behaviors of users and devices interacting

with the system. By continuously monitoring these patterns,
AI-based systems can detect and flag anomalies that may indi-
cate potential breaches. For instance, if an unauthorized user
attempts to access restricted data or if a legitimate user exhibits
behavior that deviates from their established pattern (such as
accessing a large amount of sensitive data at an unusual time),
the AI system can raise an alarm or take automated corrective ac-
tions. This capability is valuable in fog computing environments,
where the diversity of devices and users makes it challenging to
define static security rules.

In addition to anomaly detection, automated threat hunting
is another area where AI significantly enhances the security of
fog networks. AI systems can autonomously analyze system
logs, network traffic, and other relevant data to identify early
indicators of potential breaches. By continuously scanning for
suspicious activity, AI can identify threats before they escalate
into full-scale data breaches. Automated threat hunting is espe-
cially useful in fog environments where manual monitoring of
all nodes and devices is impractical due to the sheer scale and
distributed nature of the network. AI can sift through large vol-
umes of data far more efficiently than human analysts, allowing
for faster detection and response to potential breaches.

Common encryption methods, while effective, can be com-
putationally expensive and may not be feasible for all fog nodes,
those with limited processing power. AI-based algorithms can
enhance these methods by dynamically adjusting the level of
encryption based on the sensitivity of the data and the context in
which it is being processed. For example, an AI system might ap-
ply stronger encryption to highly sensitive data, such as medical
records, while using lighter encryption for less critical informa-
tion. Similarly, AI can enable real-time data masking, where
sensitive data is obscured or anonymized depending on the
access level of the requesting device or user. These dynamic se-
curity measures help ensure that data remains protected without
overburdening the computational resources of fog nodes.

AI-driven solutions offer significant advantages in securing
fog networks, but they also come with their own set of chal-
lenges. One issue is the need for large datasets to effectively
train AI models. In fog computing environments, especially in
highly distributed networks, obtaining and labeling sufficient
data for training can be difficult. Moreover, AI systems are not
immune to adversarial attacks, where malicious actors deliber-
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Breach Scenario Description

Insufficient Encryption Fog nodes with weak or no encryption are vulnerable to data interception during transmission,
allowing attackers to access sensitive information.

Weak Access Controls Without robust access control mechanisms, unauthorized users can gain access to sensitive data or
control fog nodes, leading to data theft or system compromise.

Data Integrity Attacks Attackers manipulate the data being processed, introducing false information into critical applications,
potentially causing serious operational disruptions.

Table 8 Common Data Breach Scenarios in Fog Computing

ately introduce misleading data or exploit weaknesses in the
AI’s decision-making processes. As a result, ongoing refinement
and adaptation of AI models are essential to maintaining their
effectiveness against evolving threats.

Hybrid AI models, which combine supervised and unsuper-
vised learning techniques, are emerging as a effective approach
in preventing data breaches in fog networks. Supervised learn-
ing requires labeled data and is useful for detecting known attack
patterns, while unsupervised learning can detect new, unknown
threats by identifying anomalies in the data. By integrating these
two approaches, hybrid models offer a more comprehensive so-
lution for securing fog environments. Supervised learning helps
the system recognize and respond to established threats, while
unsupervised learning ensures that novel threats are also de-
tected, even in the absence of explicit attack signatures.

4. Malware and Ransomware
Malware and ransomware pose significant threats to fog com-
puting environments, because fog nodes often have limited com-
putational resources, restricting their ability to run complex
security software. These malicious programs can infiltrate fog
nodes, enabling attackers to control or spy on them, and in the
case of ransomware, lock down critical services by encrypting
data until a ransom is paid. The decentralized nature of fog com-
puting, where a large number of nodes are distributed across the
network, increases the vulnerability of the system. An attack on
one node can spread rapidly, affecting other nodes and disrupt-
ing vital services, such as healthcare, smart grids, and industrial
control systems (Puthal et al. 2019) (Thota et al. 2018).

Fog computing networks, with their interconnected nodes,
are vulnerable to malware propagation. Many fog nodes lack
robust security protocols, making them susceptible to malicious
software. Once a node is compromised, malware can spread
laterally through the network, infecting other nodes and devices
that rely on the fog infrastructure. This widespread infection
can degrade the performance of the entire system, resulting
in disruptions to services that depend on the fog network for
real-time processing and communication.

One of the major types of malware that poses a threat to fog
environments is worm-like malware. Worms are self-replicating
programs that exploit vulnerabilities in fog nodes and other con-
nected devices, allowing them to spread without any user inter-
action. Once a worm infects one node, it can quickly propagate
to other nodes in the network, exploiting unpatched systems
and outdated security measures. This kind of malware can cause
extensive damage, as it often moves undetected, taking advan-
tage of the fog network’s decentralized structure. The rapid
spread of worm-like malware can lead to widespread service
outages, in critical infrastructures like healthcare, transportation,
and energy management.

Ransomware attacks are another significant threat in fog com-
puting. In a ransomware attack, the attacker encrypts data stored
on fog nodes, rendering critical services inoperable until a ran-
som is paid to restore access. This type of attack can be devas-
tating in fog environments where real-time data processing is
crucial. For example, if a fog node supporting a smart healthcare
system is compromised, it could lead to the inability to moni-
tor patient health data in real-time, potentially putting lives at
risk. Similarly, an attack on a fog node managing traffic con-
trol systems could cause gridlock or accidents. In such cases,
organizations may feel compelled to pay the ransom to restore
services quickly, further incentivizing these attacks (Stojmenovic
and Wen 2014) (Puthal et al. 2019).

Given the dynamic and distributed nature of fog computing,
traditional security solutions often struggle to keep pace with the
evolving threat landscape. Artificial intelligence (AI) provides a
more adaptive and scalable solution for detecting and prevent-
ing malware and ransomware in fog environments. AI-driven
security systems can analyze vast amounts of data in real-time,
detect suspicious behavior, and take preemptive action to block
threats before they spread throughout the network.

One of the methods AI employs for malware detection is
signature-based detection. This technique involves comparing
files or network activity against known malware signatures. AI
enhances this process by automating the detection and response,
allowing it to scan large volumes of data quickly and accurately.
However, this method is limited to detecting previously identi-
fied malware, making it less effective against new or evolving
threats.

To address these limitations, AI can be used to identify zero-
day threats by employing behavioral analysis. Unlike signature-
based methods, which rely on predefined malware signatures,
behavioral analysis involves learning the typical patterns of
operation within the network and identifying anomalies that
may indicate the presence of malware. For instance, if a fog
node begins exhibiting abnormal communication patterns or
attempts to access restricted data, AI can flag this behavior as
potentially malicious. This approach is useful in detecting novel
malware strains or ransomware that have not yet been formally
identified.

Fog computing networks consist of multiple, decentralized
nodes that must work together to ensure overall network secu-
rity. AI can enable these nodes to share information about de-
tected malware, allowing the network to respond more quickly
to new threats. For example, if one node identifies a suspicious
activity, it can alert other nodes to implement similar defenses,
thereby preventing the malware from spreading. This collabora-
tive approach helps to create a more resilient fog network, where
the system can defend itself more effectively against large-scale
malware and ransomware attacks.
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AI Technique Functionality in Data Breach Prevention

Anomaly Detection Monitors data access patterns and flags suspicious activity that deviates from normal behavior,
preventing unauthorized data access.

Automated Threat Hunting Continuously scans system logs and network traffic to detect early signs of potential data
breaches, allowing for preemptive action.

Encryption and Data Masking Dynamically applies encryption and data masking techniques based on data sensitivity, pro-
tecting information from unauthorized access.

Table 9 AI Techniques for Preventing Data Breaches in Fog Computing

AI-Powered Malware Detection

Real-time Data from Fog Network

Signature-based Detection Behavioral Analysis

Known Malware Signatures Zero-day Threat Detection

Preemptive Action Taken

Figure 6 AI-Powered Malware Detection and Prevention in Fog Computing

Malware type Description

Worm-like
malware

Malware that rapidly spreads through inter-
connected fog nodes by exploiting vulner-
abilities in unpatched or outdated systems,
causing widespread disruption.

Ransomware Malware that encrypts data on fog nodes,
rendering services inoperable until a ran-
som is paid to regain access to the data.

Table 10 Types of malware in fog computing environments

AI-powered security solutions are highly effective in combat-
ing these types of attacks, but they are not without challenges.
One of the key limitations of AI is the need for large datasets to
train machine learning models. In a fog computing environment,
collecting sufficient data across the distributed network can be
difficult, especially when considering the variety of devices and
applications involved. Moreover, adversaries are continually de-
veloping new methods to bypass AI defenses, which means that
AI models must be regularly updated and retrained to maintain

their effectiveness.
Despite these challenges, AI remains one of the most promis-

ing tools for securing fog computing environments against
malware and ransomware. By leveraging techniques such as
signature-based detection, behavioral analysis, and collaborative
defense, AI systems can provide real-time protection and adapt
to emerging threats more effectively than traditional security
solutions.

Conclusion

This paper focuses on understanding the security threats inher-
ent to fog computing environments, how their decentralized
structure makes them vulnerable to attacks that are less com-
mon in centralized cloud systems. Moreover, it explores the chal-
lenges of mitigating these threats in a setting where traditional
security measures are insufficient, given the distributed and
resource-limited nature of fog nodes. Decentralization makes
managing security more difficult. Unlike cloud systems with
centralized control, fog computing involves geographically dis-
persed nodes. This distribution complicates the enforcement of
consistent security measures.
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Heterogeneous nodes add to the challenge. Fog nodes range
from powerful servers to resource-constrained IoT devices. Im-
plementing uniform security mechanisms is difficult since many
nodes lack the capability to support advanced protection.

High mobility in some environments, like vehicles or drones,
further complicates security. The constantly changing network
topologies create new attack vectors.

Fog computing also increases the system’s attack surface.
A large number of nodes, each with different vulnerabilities,
broadens the range of potential threats.

Low latency and real-time constraints in fog applications,
like healthcare monitoring and autonomous driving, limit the
extent of security mechanisms. Solutions must operate without
introducing delays.

AI-based techniques offer dynamic, scalable security so-
lutions. Real-time threat detection and mitigation, even in
resource-constrained environments, address these security chal-
lenges effectively. DDoS attacks are a major concern in fog
computing. The decentralized architecture and resource limita-
tions of fog nodes make them vulnerable. Attackers overwhelm
networks or services with excessive traffic, causing service dis-
ruptions.

In fog environments, network flooding attacks are common.
Attackers flood the network with traffic, overwhelming the band-
width of fog nodes. This leads to service outages.

Resource exhaustion is another DDoS method. Fog nodes
have limited computational power, and attackers send resource-
intensive requests to exhaust these resources, causing perfor-
mance degradation or system failure.

Application-level DDoS attacks target specific applications
on fog nodes. Attackers exhaust application resources, causing
malfunctions and service unavailability.

AI plays a crucial role in defending against DDoS attacks in
fog networks. Machine learning algorithms analyze network
traffic to distinguish between legitimate users and attackers. AI
also helps fog nodes adapt and improve their defense strategies
by learning from evolving attack patterns.

AI-driven DDoS mitigation strategies include traffic filtering,
anomaly detection, and collaborative defense. Traffic filtering
allows AI models to classify and block malicious traffic based on
identified patterns. Anomaly detection models identify unusual
traffic patterns signaling a potential DDoS attack. Fog nodes
share threat information in real-time, creating a collaborative
defense strategy across the network. Intrusion attacks involve
unauthorized access to fog nodes. Attackers manipulate or steal
data, disrupt services, and further infiltrate the network.

Common techniques include man-in-the-middle (MitM) at-
tacks, where attackers exploit insecure communication channels
between fog nodes and IoT devices. Attackers can intercept or
alter transmitted data. Another method involves compromising
edge devices. Attackers exploit vulnerabilities in less secure
IoT devices to gain access to the entire fog network. Weak au-
thentication mechanisms also pose a risk. Many fog nodes use
inadequate authentication, making unauthorized access easier.

AI-based intrusion detection systems (IDS) enhance fog net-
work security by identifying suspicious behavior in real-time.
Deep learning models, such as convolutional neural networks
and recurrent neural networks, analyze vast amounts of data to
detect complex patterns of anomalous behavior.

AI solutions for preventing unauthorized access include be-
havioral analysis, real-time authentication, and threat intelli-
gence sharing. Machine learning algorithms monitor the behav-

ior of users and devices, raising alerts when abnormal activity oc-
curs. Real-time authentication continuously verifies users based
on behavioral biometrics, reducing the risk of unauthorized ac-
cess. Threat intelligence sharing allows fog nodes to collaborate
and respond more efficiently to threats by sharing. Fog com-
puting often processes sensitive data at the edge, making data
breaches a significant concern. A breach exposes personal data,
violates privacy regulations, and compromises critical systems.

Data breaches in fog computing occur due to insufficient en-
cryption. Many fog nodes do not use strong encryption, leaving
data vulnerable to interception. Weak access controls also con-
tribute to breaches. Without proper access control, unauthorized
users can access sensitive information stored or processed at fog
nodes. Data integrity attacks are another concern. Attackers
tamper with the data being processed, feeding false information
into applications like healthcare monitoring or traffic control
systems.

AI techniques are crucial in identifying and preventing data
breaches. Anomaly detection monitors data access patterns and
raises alarms when abnormal behavior, like unauthorized access
attempts, is detected. Automated threat hunting uses AI to ana-
lyze logs and system data to identify potential breaches before
they escalate. AI-based algorithms also enhance traditional en-
cryption methods, dynamically encrypting data depending on
its sensitivity and risk of exposure. Malware and ransomware
pose significant threats to fog computing. Fog nodes often lack
the resources to run complex security software. Malware can
control or spy on fog nodes, while ransomware locks down
critical services until a ransom is paid.

Malware spreads rapidly in fog environments. Worm-like
malware exploits vulnerabilities in interconnected fog nodes,
spreading through unpatched systems. Ransomware encrypts
data on fog nodes, allowing attackers to demand a ransom to
restore access to critical services.

AI helps detect malware by identifying known malware sig-
natures through signature-based detection. AI-based systems
also detect and block zero-day threats by analyzing behavior,
making it essential in defending against previously unknown
malware. AI-driven collaborative defense mechanisms enable
fog nodes to share malware-related information and coordinate
defense strategies across the network. Insider threats arise when
authorized users intentionally or unintentionally compromise
system security. Managing insider threats in decentralized fog
environments is complex. Authorized users often have legiti-
mate access, making it difficult to detect when they become a
threat.

Insiders may unintentionally expose systems to risks through
negligence or misconfiguration of security settings. Malicious
insiders can cause significant damage by leaking data or facilitat-
ing attacks, such as distributed denial-of-service (DDoS) attacks.

AI-based techniques like user and entity behavior analytics
(UEBA) detect insider threats by monitoring user behavior and
comparing it to established norms. Machine learning models
identify suspicious actions, such as unusual login times or ac-
cess to files outside of routine behavior, helping administrators
mitigate risks quickly.
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