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ABSTRACT  

The standard of medical care has risen as a result of the industry's rapid adoption of disruptive 

technology. When healthcare technologies are truly disruptive, they usher in new, more effective 

methods of diagnosing and caring for patients. This study investigates and examines the influence 

of technological transformation in healthcare innovation. We begin by evaluating existing and 

developing technologies in the context of healthcare service innovation. Then, we rely on the 

perspectives of key thought leaders from industry, consultancy, and clinical practice to forecast 

how digitalization will affect important components of the healthcare value chain, such as 

stakeholder relationships, service operations, resource needs, and healthcare economic systems. 

We investigate the role that digital disruption plays in the innovation of healthcare service. We 

conduct an analysis of the various aspects in which numerous occurrences of digital technology 

have the ability to reshape healthcare delivery, and we draw on the insights of leading experts from 

across industry, consultancy services, and healthcare delivery regarding how smart disruption can 

be anticipated to impact healthcare stakeholders, service operations, resources, and market 

mechanisms of healthcare [1-3]. 

Significant challenges are being posed to the healthcare systems of most countries by factors such 

as increasing populations, populations that are getting older, rising rates of chronic condition, the 

need to improve the accessibility to services for individuals in isolated places, and ever-higher 

expectations from consumers. These factors all contribute to an increase in the cost of providing 

healthcare, which in turn puts pressure on the budgets of both the public and private sectors. The 

ever-increasing price of technology is another obstacle to overcome; but, technology may, 

ironically, be a contributor to solutions that disrupt the conventional organizational framework of 

the healthcare sector as well as its business model [4]. It is hoped that such a transition would make 

it possible to provide treatment and preventative programs in a manner that is more efficient and 

effective, which may in turn lead to better health outcomes. In spite of the fact that genomics, 

nanomaterials, and digitization are all sorts of technology that are shaking up the sector, the latter, 

which combines software and hardware, will be the primary focus of this investigation. 

Traditional industries have been and are being fundamentally altered as a result of a phenomena 

that emerged in the twenty-first century and is known as digital disruption. Mass communication, 

publishing, retailing, banking sectors, film and music allocation are some of the industries that have 

experienced the adoption of innovative revenue streams by new yet small and maneuverable firms 

that utilise emerging innovations to offer a more appealing value assertion than that which is 

provided by the incumbents in those industries. This is congruent with the more general idea of 

disruptive innovation, which describes "how difficult, costly goods and services are changed into 

simpler, inexpensive ones," with the added benefit of expanded accessibility. 
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In a similar vein, the process of digitization is starting to have an effect on all aspects of the value 

chain that make up the healthcare business, regardless of whether it operates in the government or 

the private sector. Hospitals, doctors, drug manufacturers, pharmacies, equipment manufacturers, 

diagnostic labs, insurers, and other businesses in the healthcare industry must adjust their business 

practices to the new surroundings in order to survive and thrive in the new environment. In order 

to offer an environment that is conducive to meeting the ever-evolving requirements of healthcare 

consumers, these adjustments should be complemented by corresponding changes to policy. While 

digitization has the potential to improve healthcare outcomes for all individuals, it also has the 

potential to exacerbate existing racial biases and inequalities in healthcare. Studies have shown that 

individuals from racial and ethnic minority groups often receive lower quality healthcare than their 

other counterparts, resulting in poorer health outcomes and higher rates of mortality [5]. This is due 

to a variety of factors, including implicit bias and discrimination among healthcare providers, 

limited access to healthcare services, and lower levels of health literacy among minority 

populations. As healthcare digitization becomes more widespread, it is important to ensure that 

these biases and inequalities are not perpetuated in the digital environment [6]. This can be achieved 

through targeted policies and initiatives aimed at promoting health equity and addressing the 

underlying causes of healthcare disparities. 

It is required to evaluate how multiple sources of digital change may either separately manifest or 

converge to change the composition and organization of major functions in the medical value chain 

in order to foresee the impact that digital disruption will have on the healthcare industry. This is 

necessary in order to anticipate the effects that digital disruption will have on the healthcare 

industry[7]. Despite the fact that healthcare is a sector that is abundant in information, conventional 

models of healthcare are characterized by information imbalance. A genuine disruption should be 

a departure from the norm, and in the healthcare industry, this might be accomplished by redressing 

this imbalance via the collection and examination of data, which is made possible by technological 

advancements. To the degree that modernisation does not need governmental approvals, and with 

relatively affordable new technologies, the entry barriers for new competitors are being decreased. 

This implies that although opportunities and dangers remain common to sector participants, 

incumbents have to pay special attention to nimble new entrants prepared and prepared to disrupt 

since of lower levels of industry model risk [8]. 

The diagnosis and treatment of sickness and illness in people has been the primary emphasis of 

healthcare professions ever since they were first established. This primarily reactive form of care 

has virtually stayed constant for centuries, and it is characterized by a dispersed value chain that 

still has multiple interdependencies. This approach adds to wasteful duplication and possibly 

preventable clinical mistakes. However, the introduction and rapid growth of digital innovations 

since the middle of the twentieth century are having a profound effect on the healthcare industry. 

This can be seen in terms of enhanced research, improved delivery of care, and greater accessibility 

to both broad and specialized information by consumers. This, in turn, is driving more informed 

choice and so more efficient administration. 

In addition to this, the proliferation of ICT is altering the conventional paradigm by making it 

possible to place a much higher focus on health promotion and disease prevention. According to 

the available evidence, the transition away from a model of healthcare that is driven by providers 

and institutions in the mass market has already begun. To a greater extent, consumers will be 

empowered by the innovation to take the current illness model and transform it into a model that is 

more consumer as well as personally driven, personalized wellness and protection model bringing 

enhanced autonomy over their own fitness as a supplement to the specialist advice offered by 

clinicians. It is quite expected that significant advantages, such as fewer instances of institutional 
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care (like hospitalization for acute episodes of chronic conditions), would contribute to a decrease 

in both direct and indirect expenses. 

There is a range of opinion about the specific manner in which digitization in particular, and 

innovation more generally, will propel the progression of the sector. The quick pace at which 

technological advancements continue to take place contributes significantly to the extent of this 

uncertainty. Studies suggest that one of the ways in which digitalization may generate disruptions 

is in the manner of decentralization. It will include taking the latest or even lesser versions of tech 

that is now found in hospitals and pushing it outside, to clinics, clinics, and ultimately to homes. 

This will be done in order to improve access to healthcare. Christensen believes that years of 

clinical practice will become more interchangeable in the future. 

The amount of research and data that is accessible to physicians has grown in tandem with the 

advancements that have been made in technology. The transition from instinctive care to evidence-

based healthcare and the subsequent development of personalized treatment has already been made 

by medical professionals. Payors, particularly those located in Europe (primarily the United 

Kingdom, France, and Germany), have been at the forefront of this movement and increasingly 

base payment on evidence-based results. It has become more difficult to get additional 

compensation for drugs that are unable to demonstrate that they are better effective, except for a 

few orphan pharmaceuticals. Treatment algorithms are able to become more clear and, as a result, 

simpler to teach when each new grade is added because to targeted gene-based medicines, which 

are an example of evidence-based medicine that is specifically focused. One could possibly ponder 

a future in which the succeeding phase of evidence-based care enables medical choices to be made 

based on phenotypes instead of genotypes. This development has the potential to make it possible 

for more aspects of patient care to be delegated to other parties, such as physician specialists, nurse 

practitioners, patients, and their families. 

The ultimate result of digital disruption might be the production of increased certainty via 

timeliness, standardization, and evidence-based reasoning. This could be made possible by the 

growth in the amount of data that is now accessible. This becomes especially essential when it 

comes to providing a more precise characterization of patient outcomes and consequent 

adjustments to payment and reimbursement models. This transition is crucial for the healthcare 

sector, which is characterized by the convention of charging patients a charge for the services they 

get. Conventional business structures have been formed by this dynamic. 

Since insurance companies (national as well as private) pay for services and products in the 

Australian healthcare system, the business-to-consumer (B2C) model that has emerged as a result 

is quite interesting. However, due to the fact that insurers pay for items and services, there has been 

little accountability on the part of providers (who decide what to buy and 'push' demand) and clients 

(who make consumer choices and 'pull' demand) up until recently. Since it offers more level of 

detail and conciseness to stakeholder anticipations across the chain, the possibilities to reinterpret 

value according to results rather than distinct services is significant. This is because it will 

fundamentally alter the conversation that takes place between providers, payers, and patients. 

Because of this shift in the accepted concept of value, the value proposition offered by healthcare 

providers will need to be revised, as will the metrics used to evaluate their level of success. 

In an advanced economy, the aggregate of customer demands for speed and transparency, data to 

impact evidence-based rationale rather than instinctive decision, and compensation for results 

rather than service may lead to a more globalized marketplace vulnerable to various regulation in 

market forces conveniences, with low need for government involvement except when it is required 

to manage population-based risk. In other words, a more liberalized market may result in natural 
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regulation in both supply and demand efficiencies, with little necessity for government 

involvement other than where it is necessary to provide. 

 

The emergence of new terminology into the field of healthcare has been largely attributed to the 

advent of digitization. The word "telehealth," which incorporates the notions of "telemedicine" and 

"telecare," is the one that has gained the greatest popularity among these three. The defining 

attributes are indicative of use by health providers in many nations, despite the fact that there is no 

one meaning that is generally recognized for each of these phrases. 

The United States Health Resources and Services Administration (HRSA) defines telehealth as "the 

use of digital documents and telecommunications innovations to endorse long range clinical health 

care, customer and specialist health-related training, public health as well as health administration." 

Telehealth involves medical services offered by telemedicine as well as non-clinical services in 

remote locations such as provider training, organizational meetings, and continuous professional 

training. 

"the provision of healthcare services to patients in distant areas," is how the company Frontier 

Communications Corporation defines telemedicine. Examples of this include patient consultations 

with clinical professionals that take place through a video connection; the remote monitoring of a 

patient's vital signs; remote medical evaluations and diagnoses based on medical imaging that is 

digitally communicated; and the remote prescription of medication. 

The term "telecare" denotes the utilization of technology that allows patients to get medical 

attention in the comfort of their own homes, obviating the need for them to be admitted to an 

institution. While the patient keeps their freedom in a setting that is comfortable for them, the 

healthcare system experiences a reduction in both costs and strain. 

Because digital technologies for information and communication are so diverse, intricate, and 

dependant on one another, it is imperative that a thorough examination of each technology and the 

possible role it might play in revolutionizing healthcare be carried out. 

Apps/Software 

The term "app" refers to a software program that can be downloaded into a mobile device. This 

application was designed to facilitate the performance of a certain task. Since 2007, the quantity of 

healthcare applications that have been created for doctors and consumers has significantly grown. 

This rise may be attributed, in large part, to the proliferation of mobile electronic devices such as 

cellphones, tablets, and smartwatches. 

Apps that are designed to, among other things: monitor sleeping habits to aid in optimization 

of circadian rhythm; offer details to enhance nutrition and diet; monitor an individual's physical 

action in comparison to suggested standards; monitor chronic health conditions and alert users to 

unforeseen situations; test and enhance intellectual capabilities; enable remote diagnosis; evaluate 

basic health information; and transmit anomalies to health care providers for more thorough 

analysis are some examples. 

The overarching goals of these types of applications are to reduce the risk of sickness developing, 

speed up therapeutic intervention, promote user convenience, and gather, combine, and analyze 
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huge volumes of diverse data in order to dramatically improve the diagnostic capabilities of 

physicians. 

High Speed Broadband 
The architecture of the network that enables the transmission of information in the form of text, 

speech, and video between people, between organizations, and between systems is made possible 

by advances in communications technology, which is a fundamental facilitator of digital disruption. 

The most contemporary kind of communications technology is known as high speed broadband. It 

consists of a network of optical fiber, fiber cable, and/or mobile connections and enables the fast 

transfer of massive amounts of data in a safe, timely, and secure manner across geographic areas. 

It is feasible to achieve data transmission rates of up to 1 gigabit per second. Recent technology 

advancements have made it possible for broadband to operate at reasonably high rates, up to 100 

Mb/s, across both traditional copper phone lines and satellite connections. 

This technology functions as a platform for the transmission of diagnostic pictures and 

computerized patient data. In addition, the availability of patient care is enhanced, as is its 

efficiency in terms of both cost and expenditure, thanks to the increased mobility of data made 

possible by monitoring carried out using wireless devices. 

As a result, the locations of healthcare training, diagnosis, and treatment are undergoing significant 

changes as a result of the proliferation of high-speed internet. A skilled surgeon or a learner based 

in a big city may, for instance, perform on a patient placed in a hospital in a regional area using 

high-speed internet in combination with high-resolution video and modern robots. 

The players in the healthcare business are obligated to ensure the dependability and safety of data 

networks and information services as a result of the consequences. This requires the allotment of 

suitable quantities of capital investment as well as operational spendings in order to guarantee that 

the IT infrastructure will continue to be able to support high speed transmission rate while also 

guaranteeing that the most suitable and advanced safeguards will be in place to safeguard the data 

transfer process. 

Wi-Fi 
Wi-Fi is a communication system that relies on a network to function. It enables mobile connection 

between devices that are able to communicate with each other, hence increasing the adaptability 

and effectiveness of therapeutic services. The improvement of clinical processes is also made 

possible by the provision of wireless access to client data in real time. Good data transmission 

speeds, high levels of interoperability, and solid security features are some of the benefits that may 

be realized by using this technology, which currently has a significant installed base across the 

majority of business sectors. The ongoing development of Wi-Fi technology has resulted in 

improvements that enhance the user experience. These improvements include an increase in 

capacity and throughput capacity, an improvement in coverage, and a reduction in latency. 

Injectors, smart mattresses, wireless EKGs, and oxygen monitoring systems are some examples of 

the kind of technological advancements that have been made available to medical professionals as 

a result of recent years' worth of research and development in the field of healthcare. These and 

other devices work in combination with mission-critical data solutions including such connectivity 

to eMRs as well as real-time accessibility to X-rays and MRI images, amongst other things. The 

provision of clinical telepresence via the use of wireless internet connections helps to increase the 

accessibility of high-quality medical treatment in rural locations. 
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eMRs 
Individual healthcare practitioners have historically been responsible for the maintenance of patient 

records in a hard copy format. The fragmented manner in which these documents are kept in storage 

makes it impossible to form a linked, comprehensive, and longitudinal understanding of the 

patient's medical history. Electronic medical records, on the other hand, are stored in a digital 

format, which makes it possible for relevant providers to have rapid and secure access to real-time 

patient data. These electronic records are able to offer a patient's complete medical history, 

including diagnoses of diseases, information of immunizations, allergies, prescription drugs, 

treatment plans, and radiology as well as laboratory test findings. 

Electronic medical records, in contrast to paper records, have the potential to enhance patient 

outcomes by providing a number of advantages. These benefits include: • A more comprehensive 

perspective of a patient's treatment, which leads to better decision-making by physicians. • The 

ability to rapidly and readily communicate information with numerous healthcare practitioners who 

are engaged in the treatment of a patient • More accurate diagnosis and therapy that is more 

successful overall. • The automation of workflows and the streamlining of procedures across the 

whole of the medical value chain, which led to increased efficiency and larger cost savings as a 

consequence. 

In addition to the advantages that are individual to the patient, having access to electronic copies 

of aggregated patient information makes it easier for providers to do aggregate analyses of patient 

groups, which in turn enables providers to perform comparative evaluations of outcomes. Because 

of this, such information may be helpful in deriving value and therefore obtaining payment from 

payers. However, there is a significant amount of regulation about privacy that has to be addressed 

with before we can fully realize the possibilities of this notion. Additionally, national regulations 

make it impossible to store data using a cloud computing strategy, and many different jurisdictions 

do not let the data of its citizens to be kept outside of the country. 

 

Big data may be broken down into five distinct yet interconnected categories: 1. The quantity of 

the data with regard to its administration and storage is referred to as its volume. 2. The term 

"variety" refers to both the structure and the many kinds of data. 3. The rate at which data are 

created, processed, and evaluated is referred to as the velocity of these activities. 4. The quality of 

the data, its relevance, its forecasting capacity, and its significance are all aspects of veracity. 5. 

The value of the data is the advantage that is obtained by people who use the data.  

The role of data analytics in OR (Operating Room) efficiency is becoming increasingly significant. 

Information from data analytics can be used to identify areas of improvement and optimize various 

aspects of OR operations, such as scheduling, resource allocation, and patient flow. According to 

a study by Trivedi & Patel (2021a) improving operating room efficiency has a substantial impact 

on cost savings, patient satisfaction, and surgical department morale [39]. By analyzing data related 

to patient flow, OR utilization, and surgeon productivity, hospitals can identify areas of inefficiency 

and make data-driven decisions to improve OR operations. Furthermore, data analytics can also 

assist in predicting patient demand, which can help hospitals manage resources more effectively. 

By using predictive analytics, hospitals can estimate the number of patients that will require surgery 

on a given day and allocate resources accordingly. This can help reduce wait times and increase 

OR utilization, ultimately leading to improved efficiency.  

It is very necessary to manage the data sources, the content, the consistency, the access and the 

security, the stewardship, and the user training in order to keep the data integrity intact. It is possible 

for problems to arise with the data's unreliability, inaccessibility, inaccuracy, or omission if there 
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is insufficient management. The term "data analytics" refers to the process of analyzing huge 

amounts of data that come from a variety of sources, as well as the simplicity and rapidity with 

which the study may be carried out. The information included in electronic health records is closely 

intertwined with big data and the analysis of this data.  

Big data as well as data insights have a lot of potential uses in the medical field, and these uses 

span across a large variety of fields. There are four main types of application: 

1. The management of the distribution of healthcare and the expenditures connected with it is 

referred to as "administration and delivery." 2. Helping clinicians with their decision-making is the 

purpose of clinical decision support. 3. The phrase "clinical information" refers to the information 

collections that are made accessible expressly for the purpose of data analytics. 4. Analysis of 

people and groups, including their habits and ways of life, in terms of demographics, with a focus 

on behavior and consumption. 

Cognitive Computing and Artificial Intelligence 

The capacity of a computer or other device to integrate learning into its own programming is 

referred to as cognitive computing. It is a subset of AI that makes an effort to simulate the way in 

which people think, particularly in regards to perception, understanding, and reasoning. By gaining 

access to large amounts of data, the goal is to answer complicated issues that include a large number 

of undefined variables. 

In most cases, the software that serves as the basis for cognition computing and ai technologies 

calls for computer hardware that is endowed with robust data processing capabilities. Predicting 

the behavior of the stock market and the weather are two examples of applications that have been 

developed so farAI can be used to analyze large amounts of patient data and identify patterns and 

trends that can inform clinical decision-making. This can help healthcare providers to personalize 

treatment plans and improve patient outcomes. AI can also be used to automate routine tasks such 

as scheduling appointments and processing paperwork, freeing up healthcare providers to focus on 

patient care. In the field of medicine, the capabilities of modeling and simulation offered by the 

technology have a broad range of applications that may help improve patient outcomes. 

In addition to improving patient outcomes, AI can also increase hospital efficiency by streamlining 

administrative tasks and reducing costs. For example, AI-powered systems can optimize hospital 

workflows by predicting patient volumes, identifying bottlenecks in the system, and reallocating 

resources accordingly. This can help to reduce wait times, increase the efficiency of care delivery, 

and ultimately improve patient satisfaction. AI can also be used to monitor patient outcomes and 

identify areas where improvements can be made, allowing healthcare providers to continuously 

improve the quality of care they provide.  For instance, with Random Forest regression, Trivedi & 

Patel (2020) found that integration of AI and ML is reportedly essential to reduce the length of time 

that patients must wait [54].  The field of oncology particularly is an area of application in which 

accelerated modeling approaches may be used to make more precise predictions about the course 

of development of certain tumors. This is currently leading to enhanced diagnosis and treatment by 

physicians, but additional considerable improvements are expected to occur in the near future as 

the software continues to grow more intelligent and the hardware continues to become ever more 

sophisticated. 

Considering that the industry is highly fragmented while also being closely intertwined through 

interdependencies, the complexity that results means that those who are most adequately placed to 

comprehend the extent and scale of such disruption are either those who are in charge of making 

decisions for healthcare institutions or those who have a vested the company’s interest of 
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healthcare. Discussions with key thought leaders, such as the chief executive officer of a global 

private clinic group with over 200 hospitals located in 5 different nations, a top executive from a 

worldwide health consulting business, and a qualified healthcare executive who already has held 

clinical and organizational knowledge in university, healthcare, and consulting 

organizations provided valuable insights. These findings have been categorized according to four 

primary settings, which are as follows: (1) stakeholders, particularly patient outcomes; (2) service 

activities; (3) resources; and (4) healthcare market mechanisms. 

Stakeholders 

The most significant source of change for stakeholders will be to the manner in which care is 

provided, with an increased emphasis on the experience provided to customers. 

Consumers increasingly anticipate that the health care and social services systems will become 

more responsive to the specific requirements of people, and this expectation is growing. Customers 

anticipate that their autonomous right to have a part in the decision of their treatment will be 

honored, as opposed to being treated like a number inside a system, which is their primary 

expectation. As a client in a hospital, for instance, he/she get to decide what he/she want to consume 

and when wants to eat it. As a result of the fact that healthcare facilities, such as hospitals, are 

highly integrated ecosystems in which the connectivity between nodes generates rigidity rather than 

flexibility, it is not always possible to guarantee compliance with patient preferences, even for 

seemingly straightforward requests. This is because of connections with other standardized 

processes and procedures, such as the accessibility of nursing personnel to help with feeding, the 

mass manufacture of meals, and logistics operating to tight schedules to serve huge numbers of 

patients. This list is not exhaustive. It is possible to state that despite the fact that technological 

advancements have made it possible for greater adaptability in meal preferences (albeit at the 

expense of additional expense), such ability to adapt is likely to be more pervasive in hospitals 

because choice is at the center of the value proposition offered by private healthcare. 

The advantage of meeting the desire for enhanced openness and accessibility to data in the 

healthcare industry is that it results in a customer and payer that is better informed. Although the 

technology infrastructure to facilitate data collecting and openness already exists, suitable and 

scalable reporting methods have not yet been implemented. For instance, it is difficult to locate 

information that determines the choice of surgeons, such as the typical duration of stay for a certain 

treatment, the percentage of patients who required unexpected readmission, and the infection rate. 

Further discourse on the changes in policy and regulation, as well as the legal considerations that 

are necessary to bring about this dynamic, is warranted in order to meet the demand for this 

knowledge that has been expressed by stakeholders. 

In spite of the fact that technologies of the next generation, such as nano, tailored medicines, and 

genetic screening, have great potential, there has not been a stepwise rise in the rate of 

advancement. On a more global scale, instances of this include the slow but steady increase in the 

average life expectancy, as well as the fact that there is still no known treatment for cancer. 

Consequently, even though the whole of the human genome has indeed been sequenced, the 

influence on healthcare in the form of a major disruption to the trends in healthcare has not yet 

materialized. 

Activities/operations 

The invention of penicillin, the breakthrough of antipsychotics, breakthroughs in surgical 

techniques that made it possible to perform open-heart surgery, joint replacement, and kidney 

transplantation, and the discovery that bacteria are the cause of peptic ulceration are all examples 

of the incremental changes that have gradually brought about a revolution in medical care over the 

course of history. Despite the exponential growth of technology, which is being manifested via 
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widespread digitization, there are specific aspects of the healthcare business that may restrict the 

consequences of the same magnitude. These characteristics might include: 

The protective impact of regulation on industry suppliers offers some degree of cushioning against 

widespread upheaval, and the complexity of regulatory demands seems to expand every year in 

keeping with the assumption that volatility will be regulated to zero if at all feasible. The challenge 

of where and how to give coordinated care in a safe manner is essentially a reflection of the 

complicated nature of care, and this accounts for the majority of the question. For instance, there 

are alternatives to hospital treatments that are on the simpler end of the complexity spectrum, such 

as gastroenterological interventions; these tasks may be performed at scale by day surgeries. Even 

still, extrapolating this tendency to settings other than day surgery is very improbable due to the 

regulatory restrictions that exist across the healthcare industry as a whole and the assumption that 

patient safety is a responsibility that must not be sacrificed. 

Resources 

While checking for potentially disruptive effects on formal services, it is challenging to foresee a 

technology-based substitute to the services provided by humans, who make up the majority of the 

resources. Because the overwhelming bulk of services offered by hospitals are carried out by 

people, the hospitals' primary lines of business should continue to operate normally for the coming 

years. Since there is currently no viable alternative to the nuances of social interaction and empathy, 

this situation is likely to continue for some time. The resource basis ought to buffer the healthcare 

industry from role replacement and basic service disruption, unless fast advancements in artificial 

intelligence led to machines that can successfully replace the complexities of human 

comprehension and interaction. 

The advancement of technology in certain resource sectors does not always connect to the 

advancement of healthcare in general. The decision made by certain hospitals to forego 

digitalization in the domain of eMRs is rational when seen from the point of view of risk 

management as well as economics. Despite the fact that electronic records are touted to improve 

accuracy and decrease the likelihood of errors, they are not risk-free. Concerning matters pertaining 

to the safety of data stored digitally, paper-based records are inherently resistant to the dangers 

posed by modern technology. In addition, the case for transitioning to electronic medical records 

is not compelling because there is presently no strong evidence on error prevention nor a decrease 

in the cost of error, and there is a correlating absence of data for significant enhancements in 

productive output. This is why the case for transitioning to electronic medical records is not 

compelling. A hospital that had only just been built to conform with the greatest degree of electronic 

medical record application offered an insight in which they contrasted the benefits of using 

electronic medical record technology to the paper-based benchmark. Because of the high expenses 

of implementing and pushing the technology across the hospital, it was concluded that the roi was 

relatively poor. This was due to the fact that there was no plainly detectable meaningful patient 

gain or cost advantage. In spite of this, the very existence of technology, despite the fact that it does 

not yet have a clear value proposition, is an indication of the possibility of a revolution in the service 

delivery model in the future. The field of artificial intelligence (AI) is rapidly expanding, with 

increasing applications across a range of industries including healthcare. However, the scarcity of 

skilled AI specialists has resulted in adoption delays. As Wang et al. (2021) and Trivedi & Patel 

(2021b) pointed out, there is a growing need for AI adoption across all industries, and healthcare 

providers are finding it increasingly difficult to launch AI-based initiatives due to a shortage of 

resources [78, 81]. This shortage of talent has caused a bottleneck in the industry, limiting the pace 

of innovation and the ability of healthcare providers to improve patient outcomes. 
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The lack of AI specialists is a major concern for healthcare providers as they face a wide range of 

challenges, from the need to analyze vast amounts of data to the development of complex 

algorithms that can support clinical decision-making. These tasks require highly specialized skills 

that are in short supply, and healthcare providers are struggling to find qualified personnel to fill 

these roles. As a result, many healthcare organizations are unable to develop and implement AI-

based initiatives, which could improve patient care and outcomes. The scarcity of skilled AI 

specialists is thus a major obstacle to the widespread adoption of AI in healthcare, and it is a 

challenge that must be addressed if the industry is to realize the full potential of this transformative 

technology. In the field of radiology, for instance, the possibility of a computer-aided diagnosis is 

quite real and is made possible by algorithms that make it possible to analyze a number of different 

pictures. Another industry that has been affected by digital disruption is pathology. Assays have 

been automated, which has resulted in a decreased requirement for human resources. In both cases, 

the technology in question is 66 G. Because to the work done by Ford et al., it is now possible for 

these solutions to be provided on a large scale and remotely, which has resulted to increased 

productivity and decreased expenses. 

Although there may be chances to boost efficiency in many aspects of the value chain, the human 

interaction of treatment cannot be digitalized away completely. However, there may be 

opportunities to do so. The degree to which person participating in the evaluation is required for 

the provision of care will determine the scope of the impact that digital disruption will have on 

business delivery models. Sections in which a digital interface by now exists and is crucial to the 

actions conducted will be vulnerable to technological transformation. 

According to prominent thought leaders in the For-Profit, Advisory, and Academic sectors, 

although new tech is implicitly implicated and will play a significant part in health care services 

disruption, it may not be the only driver of disruption to the fundamental structure of the healthcare 

system. The disruption will have an influence on stakeholder expectations, activity organization, 

resource use, and healthcare delivery economic models. 

Technological advancements will reshape how certain aspects of healthcare are provided, resulting 

in cost reductions and efficiency via scale, such as radiography and pathology services. The 

community's omnipresent need for healthcare, labor-intensive resource limits, inherent significant 

risk in health services, and the consequent necessity for wide regulation all help to defend against 

fundamental change. 

The data created, recorded, and analyzed as a result of healthcare digitisation will help to change 

the composition and organization of important operations in the medical value chain. The potential 

of this data to deliver greater detail and clarity to all stakeholders will transform expectations 

throughout the value chain, radically altering the discourse between providers, payers, 

policymakers, and patients. As a consequence, rather than the skewed motivations established by 

traditional fee-for-service arrangements, a more liberalized market subject to natural management 

in market forces efficiency might develop. 

Despite this, among the most challenging difficulties for creators and suppliers of digitized services 

is determining how to properly monetize them. Unfortunately, numerous digital practices, 

including free and freemium offerings, have impacted customers' relationships with digital 

technology, especially their desire to pay. Many consumers expect the advantages of digitization 

without hesitation, either tacitly or openly. While providing such services has helped businesses 

distinguish themselves and increase market share, it has been at the expense of profitability. As a 
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result of diminishing economic incentives, the change to digitization may lag significantly after an 

initial surge of offers. 

Digitization will impact and facilitate industry-wide change, but the ultimate disruptor will be a 

shift in the social and political terms and conditions that characterizes the healthcare system, driven 

by the need to transition from volume-driven fee-for-service concepts to more cost effective, 

evidence-based payment models based on results. Existing therapeutic care models and 

accompanying commercial structures will undergo modifications as a result of digitization. This 

will give motivation for innovation, the development of new income sources, and the establishment 

of new cost structures, all of which will eventually alter healthcare delivery to suit the demands of 

people and redefined metrics of value. 

[1–6] [7–43]  [44–65]  [66] [2] [2,67–92] [93–119]   
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