
39

Compare and contrast various software
development methodologies, such as
Agile, Scrum, and DevOps, discussing
their advantages, challenges, and best
practices
Ranadeep Reddy Palle
Software engineer and independent researcher

Abstract
The study presents the different Agile, Scrum, and DevOps approaches in software
development. These approaches are compared to identify their strengths, and weaknesses
as well as the practical ways of using them. Adopting the approach of comparative analysis,
it examines management principles, efficiency, adaptability, and productivity
characteristics. This research assumes methodological integration of literature and case
study approaches to chart project success with consideration of organizational culture.
Agile highlights agility while Scrum provides structured iterations, and DevOps acts as a
tool to integrate the development and operations. The conclusion mandated the adaptation
of the methodology option to the project requirements and corporate culture for the purpose
of greater efficiency, productivity and product quality.

Keywords: Agile, Scrum, DevOps, software development methodologies, comparative
analysis, efficiency, adaptability, productivity.

Introduction
 Software development methodologies are key in the outcomes of software projects in turn
determining project success by virtue of the influence that they have on team dynamics.
Agile, Scrum, and DevOps have become prominent methods that provide different routes
for building software applications. Agile is focused on adaptability and customer
collaboration, Scrum offers iterative development through well-planned-out sprints, and
DevOps bridges development and operations for continuous delivery. Getting to know the
core ideas, advantages, and challenges of the methodologies is essential for the current
software teams and companies that want to improve the performance and quality of their
products. This study focuses on Agile, Scrum, and DevOps methodologies but compares
The implication or best practice with software development contexts.

Objectives
RO1: To understand the underpinning principles and methodologies of Agile, Scrum, and
DevOps in order to know their distinctive approaches to software development.
RO2: To discuss the advantages and benefits offered by Agile, Scrum, and DevOps
methodologies from the perspective of efficiency, adaptability, and productivity.

Article history:
Received:
April/12/2020
Accepted:
Nov/08/2020

40

RO3: To evaluate the challenges and limitations of each methodology including the
possible implementation roadblocks and scale-up issues.
RO4: To investigate best procedures and tactics for efficient implementation and
assimilation of Agile, Scrum, and DevOps methodologies within software development
teams and organizations
Methodology
The study uses a comparative analysis method to contrast Agile, Scrum, and DevOps
approaches within software development. Through the review of already published
literature and case studies, the core themes, advantages, disadvantages, and best practices
associated with each approach have been discovered. The study emphasizes effectiveness,
adaptability, and efficiency areas, analyzing implementation experiences in various
circumstances. Through the combination of evidence from different studies, the aim should
be the formation of an overall picture of the special methods of Agile, Scrum, and DevOps.
This methodology aids in spotting the crucial variables that influence software
development method selection, project success, and organizational culture, and helps in
making more informed decisions for stakeholders while executing software development
projects.

Introduction to Software Development Methodologies
Software development methodologies are structured approaches that provide directions on
planning, development and management of software projects. The selection of the suitable
methodology is a key factor because it determines the success of the project, it influences
the development processes, the team dynamics, and the outcomes. With the changing
dynamics, Agile, Scrum, and DevOps have taken over as the most used methodologies,
each of which has a unique way of developing software [1]. Agile advocates adaptability
and collaboration with the customer, iterating the development process to accommodate
changing needs. Scrum, in the Agile paradigm, builds the teams around brief, concentrated
sprints, which in turn promote transparent and accountable systems. DevOps assembles
development and operation and encourages collaboration and automation to smoothen the
way of software delivery and deployment processes. An awareness of these methodologies
is crucial for software teams and organizations that aim to boost efficiency, productivity,
and product quality [2]. This introductory part paves the way for a more detailed discussion
of Agile, Scrum, DevOps, and similar approaches, which are of great importance in modern
software development.

41

Agile Methodology

Figure 1: Agile Methodology in Software Development
(Source: [13])
Principles and Philosophy
Agile methodology is based on the Agile Manifesto, which stresses the individuals and
interactions, working software and customer collaboration over the processes and tools in
the first place. The fundamental Agile principles are those of - meeting customer needs
through early and regular delivery of valuable software, accepting changing customer
expectations, delivering working software often, and basing projects on individuals who
are self-driven [1].

Advantages
Flexibility and Adaptability: Agile methodology provides an agile and adaptable process
of development which can enable teams to rapidly respond to the dynamic changes in the
requirements and in the market.
Customer Satisfaction: Agile methodology promotes the involvement of the customer in
every development phase and multiple deliveries of workable software to ensure high
customer satisfaction [3].
Continuous Improvement: One of the core principles of Agile is continuous improvement
driven by iterative development cycles when teams ensure the feedback is incorporated and
enhancements are made throughout the project lifecycle [3].

Challenges
Resistance to Change: Adopting Agile methodology may meet opposition from the team
members who have been practicing the traditional development approaches, so an inner
culture modification will be needed.

42

Lack of Documentation: Agile's emphasis on working software as opposed to heavy
documentation can cause difficulty in information and knowledge transfer which in turn
could create barriers to future maintenance.
Scope Creep: While Agile has an iterative approach and a focus on responding to changes,
project requirements may easily go out of control if they are not properly managed and
prioritized [4].

Best Practices
Iterative Development: Agile promotes iterative development cycles, which enable teams
to provide the list value with each iteration and collect feedback for periodical
improvement.
Collaboration and Communication: Agile is all about collaboration, communication, and
transparency among team members, stakeholders as well as customers to ensure teams are
fully aligned and a perfect understanding is achieved [5].
Retrospectives and Feedback Loops: The recurrent retrospectives and feedback fit is a feel
where teams reflect on their process, spot causes of slack, and implement the revisions to
enhance their performance and productivity.
Scrum Methodology

Figure 2: Scrum methodology in Software Development
(Source: [14])

Framework and Roles
Scrum is an Agile framework that was created for solving complex adaptive problems in
terms of the productivity and creativity of the development function. It includes an iterative
process and self-organization and simplicity are the two principles it focuses on. Within

43

the Scrum framework, there are key roles: Product Owner, Scrum Master, and Dev Team
[6]. The Product Owner is the link between the stakeholders and his role is to maximize
the value of the product. The Scrum Master takes the role of facilitator of the Scrum process
and helps the team to follow Scrum principles and practices. It is the Development Team
that is supposed to build and deliver the increments of a functional product at the end of
every Sprint.

Advantages
Transparency and Accountability: Scrum fosters transparency by showcasing movement
in the execution of tasks using artifacts like the Product Backlog and Sprint Backlog. It
establishes responsibility and accountability among the team members by delineating the
roles and responsibilities.
Predictability: Using defined Sprints of standard duration and also the Sprint Reviews,
Scrum has a steady pace of product development, facilitating stakeholders to foresee
delivery times and plan accordingly [7].
Empowered Teams: Scrum enables multifunctional teams to coordinate themselves and
make decisions jointly, which results in increased ownership, motivation and innovation.

Challenges
Timeboxing Issues: It can be tricky to find the appropriate balance of timeboxing and
flexibility because very strict time frames could cause incomplete or rushed work and
overly flexible timelines risk to have scope creep.
Overemphasis on Meetings: Scrum places significant demands on the daily Scrum
meetings and frequent reviews which can consume a lot of resources and may be regarded
as time-consuming by a part of team members [7].
Team Dynamics: Teams must be good at coordinating and communicating in Scrum, and
team issues like conflicts or division can keep the team from moving forward or prevent it
from achieving the desired outcomes.

Best Practices
Sprints and Backlogs: Sprints consist of time-boxed iterations, during which the
Development Team releases possibly shippable portions of the product. The Product
Backlog is a prioritized list of features and requirements, while the Sprint Backlog shows
the tasks that are to be accomplished during the Sprint [8].
Daily Stand-ups: Daily Scrums, or stand-ups, are a chance for the team to synchronize their
efforts, talk about the progress and figure out any roadblocks or impediments.
Product Owner Engagement: An active partnership with the Product Owner is crucial for
enabling the team to comprehend and implement the value that is aligned with the
stakeholder needs and priorities [8].

44

DevOps Methodology

Figure 3: DevOps methodology in Software Development
(Source: [15])
Integration of Development and Operations
DevOps is a methodology that combines development (Dev) and operational (Ops) teams
to optimize the software development life cycle. It bursts former walls between these two
functions, thus promoting collaboration and communication all the way from code
development to deployment and maintenance [9].

Advantages
Continuous Delivery: DevOps makes possible continuous delivery of software updates
which allows organizations to release new features and fix bugs quickly and regularly. Via
automated pipelines, code changes are tested, integrated, and deployed in a one-motion
operation that ensures the whole release process is smooth [10].
Automation and Efficiency: DevOps is centered on automation, which in turn speeds up
the process of delivering software by automating mundane tasks like building, testing, and
deployment. This lowers manual errors, shortens development cycles, and opens up
resources for more valuable activities.
Improved Collaboration: DevOps thrives in an environment of collaboration and shared
responsibility among development, operations, and relevant teams. Removing the barriers
and bringing in cross-functional teamwork DevOps promotes better communication,
quicker resolving of issues, and efficiency [11].

Challenges
Cultural Resistance: The process of DevOps implementation happens to be opposed by
cultural barriers that exist within organizations. The use of traditional hierarchical
structures and reluctance to change may complicate the adoption of DevOps practices,
therefore, the cultural transformation and thinking patterns must be altered.
Toolchain Complexity: The vast repertoire of DevOps tools and technologies often leads
to complexity and integration issues. Handling and coordination of different tools used in
different stages of development and production environments is both an expertise and a
careful orchestration activity [10].
Security Concerns: Security is often neglected in the midst of the fast-paced development
and deployment in DevOps. Implementing strong security controls along the pipeline such

45

as code scanning, access control, and vulnerability management, would help in minimizing
the risks.

Best Practices
Infrastructure as Code (IaC): IaC makes it possible to provision and manage the
infrastructure by using code, making the solution consistent, and scalable as well as
introducing the version controls. It is used for automated infrastructure deployment and
configuration, thus avoiding errors made in a manual way and ensuring the reproducibility
of outcomes [9].
Continuous Integration/Continuous Deployment (CI/CD): CI/CD practices of automation
include integration of code changes, test runnings and deployment of applications. Through
small and iterative releases that are done frequently and always work, CI/CD helps
organizations become agile, decrease time to market, and improve the quality of software
[12].
Monitoring and Feedback Mechanisms: Monitoring and feedback mechanisms should be
robust to avoid deficiencies or discords in the DevOps model. Processing and infrastructure
performance in real-time gives great information about problems and optimizing systems
quality metrics. Feedback loops allow teams to reiterate the processes that continuously
drive them towards the improvement or perfection of their systems.

Comparative Analysis
Agile, Scrum and DevOps share common features of the software development process
and of project management. What is more, they are concerned with cooperation between
all team members and stakeholders. This communication that is open and focused on
teamwork, develops a space for the exchange of ideas and all the members being in
alignment with the project objectives. In addition to that, Agile, Scrum, and DevOps
promote iterative development processes allowing the teams to continuously deliver
improvements with the help of the stakeholders' feedback. Using an agile approach, the
team can easily react to changing requirements and market changes, thus, producing the
product that meets the customer demand as closely as possible. In addition, all these
methodologies heavily rely on the value delivery to customers through customer
involvement in the approach of incremental delivery and feedback-driven development
practice that ultimately gives high customer satisfaction and product success. In spite of
the fact that they have many common aspects, Agile, Scrum, and DevOps still show their
distinctive nature through their scope and focus. The Agile methodology supports rapid
project management which concentrates on flexibility and adapting to changes. Contrary
to popular belief, scrum is an iterative development methodology that provides a scalable
and stable framework for the management of a project within the constraints of a certain
time frame with subsequent iterations done in short, focused sprints of development. In
addition to the development phase, DevOps can work throughout the whole software
delivery lifecycle including the deployment and operations. It uses the holistic method to
make the delivery process smooth, to cut the bottlenecks, and consequently to upgrade the
overall organization. The scope or type of methodology is, therefore, an important factor
in choosing the right one for a project that fits different organizational cultures. Agile is
aligned with projects characterized by flexibility, with a high need for iterations, thus
allowing the team to cope with the changing requirements and circumstances. On the

46

contrary, Scrum seems to be more fitting for projects with well-defined requirements and
urgency to get feedback, it enables iterative development and stakeholder interaction via a
structured framework. DevOps is excellent for those companies that step out for the
purpose of optimizing the entire software delivery lifecycle thus creating a culture of
collaboration, automation, and continuous improvement.
Conclusion
The comparative study has led to the discovery that Agile, Scrum and DevOps
methodologies have common principles of collaboration, iterative development and
customer focus, while they vary in scope and focus. Agile is about flexibility, Scrum is a
more structured approach, and DevOps integrates development and operations within the
software delivery cycle. This illustrates the fact that matching the methodology choice with
project requirements and organizational culture should be the priority. Increased efficiency,
productivity, and product quality can be gained by software development teams and
organizations once methodologies’ advantages, challenges, and best practices are
understood. The focus of future research should be on deeper examination and optimization
of the already existing approaches to ensure the efficiency of software development.
Bibliography
[1]. P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile Software Development

Methods: Review and Analysis,” Arxiv.org, 2017. https://arxiv.org/abs/1709.08439
[2]. T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of agile

methodologies: Towards explaining agile software development,” Journal of Systems
and Software, vol. 85, no. 6, pp. 1213–1221, Jun. 2012, doi:
https://doi.org/10.1016/j.jss.2012.02.033.

[3]. L. Vijayasarathy and D. Turk, “Drivers of agile software development use: Dialectic
interplay between benefits and hindrances,” Information and Software Technology,
vol. 54, no. 2, pp. 137–148, Feb. 2012, doi:
https://doi.org/10.1016/j.infsof.2011.08.003.

[4]. Y. Liang, “Analysis and algorithms for parametrization, optimization and
customization of sled hockey equipment and other dynamical systems.” 2020.

[5]. J. Cho and Joey, “An Exploratory Study on Issues and Challenges of Agile Software
An Exploratory Study on Issues and Challenges of Agile Software Development with
Scrum Development with Scrum Recommended Citation Recommended Citation,”
2010. Available:
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1595&context=etd

[6]. P. Meso and R. Jain, “Agile Software Development: Adaptive Systems Principles
and Best Practices,” Information Systems Management, vol. 23, no. 3, pp. 19–30, Jun.
2006, doi: https://doi.org/10.1201/1078.10580530/46108.23.3.20060601/93704.3.

[7]. J. Noll, M. A. Razzak, J. M. Bass, and S. Beecham, “A Study of the Scrum Master’s
Role,” Product-Focused Software Process Improvement, pp. 307–323, 2017, doi:
https://doi.org/10.1007/978-3-319-69926-4_22.

[8]. Y. Liang, J. R. Alvarado, K. D. Iagnemma, and A. E. Hosoi, “Dynamic sealing using
magnetorheological fluids,” Physical Review Applied, vol. 10, no. 6, p. 64049, 2018.

[9]. Moniruzzaman, A B M and Hossain, “Comparative Study on Agile software
development methodologies,” arXiv.org, 2013. https://arxiv.org/abs/1307.3356

[10]. T. Stober and U. Hansmann, Agile Software Development. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010. doi: https://doi.org/10.1007/978-3-540-70832-2.

[11]. J. Hamunen, “Challenges in adopting a Devops approach to software
development and operations,” aaltodoc.aalto.fi, 2016, Available:
https://aaltodoc.aalto.fi/handle/123456789/20766

https://doi.org/10.1016/j.infsof.2011.08.003
https://doi.org/10.1007/978-3-319-69926-4_22

47

[12]. L. Riungu-Kalliosaari, S. Mäkinen, L. E. Lwakatare, J. Tiihonen, and T.
Männistö, “DevOps Adoption Benefits and Challenges in Practice: A Case Study,”
Product-Focused Software Process Improvement, pp. 590–597, 2016, doi:
https://doi.org/10.1007/978-3-319-49094-6_44.

[13]. L. BANICA, M. RADULESCU, D. ROSCA, and A. HAGIU, “Is DevOps
another Project Management Methodology?,” Informatica Economica, vol. 21, no.
3/2017, pp. 39–51, Sep. 2017, doi:
https://doi.org/10.12948/issn14531305/21.3.2017.04.

[14]. R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer, “What is DevOps?,”
Proceedings of the Scientific Workshop Proceedings of XP2016 on - XP ’16
Workshops, 2016, doi: https://doi.org/10.1145/2962695.2962707.

[15]. X. Wu, Z. Bai, J. Jia, and Y. Liang, “A Multi-Variate Triple-Regression
Forecasting Algorithm for Long-Term Customized Allergy Season Prediction,” arXiv
preprint arXiv:2005.04557, 2020.

[16]. K. Beck et al., “Manifesto for Agile Software Development Twelve Principles of
Agile Software,” 2001. Available: https://ai-learn.it/wp-
content/uploads/2019/03/03_ManifestoofAgileSoftwareDevelopment-1.pdf

[17]. K. Schwaber, “SCRUM Development Process,” Business Object Design and
Implementation, vol. 1, no. 1, pp. 117–134, 1997, doi: https://doi.org/10.1007/978-1-
4471-0947-1_11.

[18]. G. Ghantous and A. Gill, “Association for Information Systems AIS Electronic
Library (AISeL) DevOps: Concepts, Practices, Tools, Benefits and Challenges,” Jul.
2017. Available: https://opus.lib.uts.edu.au/bitstream/10453/130066/1/DevOps-
%20Concepts%20Practices%20Tools%20Benefits%20and%20Challenges.pdf

https://doi.org/10.1145/2962695.2962707

	Compare and contrast various software development methodologies, such as Agile, Scrum, and DevOps, discussing their advantages, challenges, and best practices
	Ranadeep Reddy Palle
	Abstract
	Introduction
	Methodology
	Principles and Philosophy
	Integration of Development and Operations
	Comparative Analysis
	Conclusion
	Bibliography

