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ABSTRACT 

Cloud workflows remain vulnerable to complex non-linear threats despite existing security 

solutions. This paper proposes a deep learning model that integrates Support Vector Machines 

(SVM) algorithm to enhance the security of cloud workflows. The proposed model combines the 

strengths of SVM’s robust classification capabilities with the flexibility and generalization abilities 

of deep learning models. The model consists of two main components: a deep neural network 

(DNN) for feature extraction and an SVM classifier for anomaly detection. The DNN is trained on 

a large dataset of normal workflow patterns to learn the underlying features that distinguish normal 

from anomalous behavior. Once the DNN has extracted the relevant features, the SVM classifier is 

used to classify the workflow patterns as normal or anomalous. The proposed model offers several 

advantages over traditional anomaly detection methods. The paper also discusses the performance 

parameters and metrics used to evaluate the effectiveness of proposed deep learning (DL) methods 

in cloud computing cybersecurity. 

I INTRODUCTION 

Cloud computing has had a profound impact that extends beyond specific sectors, offering 

individuals, organizations, and entire industries with unmatched flexibility, scalability, and cost-

effectiveness. For example, in healthcare, the adoption of cloud-based electronic health records has 

improved care coordination and transformed medical imaging analysis (Griebel et al., 2015). 

Telemedicine has flourished on secure cloud solutions, connecting patients and professionals across 

geography. Big data platforms like Amazon Web Services (AWS) and Microsoft Azure have 

empowered data-driven decision-making, paving the way for further industry transformation. The 

transformative journey of cloud computing is far from over, and it promises to reshape industries 

and redefine how we interact with the world. Its on-demand scaling capabilities and flexible 

resource allocation ensure optimal system efficiency in diverse settings, from high-performance 

computing to enterprise resource planning. The pay-as-you-go model demonstrably contributes to 

cost-effectiveness, particularly for small and medium-sized enterprises, by eliminating the need for 

significant upfront investments. 

Despite having the potential to revolutionize the way we store, process and access data, the security 

concerns remain a critical step to the widespread adoption of cloud computing. These concerns are 

multifaceted and affect diverse categories of consumers (Mowbray et al., 2012). One primary 

security concern involves data breaches and unauthorized access (Faheem et al., 2017), which can 

jeopardize the confidentiality and integrity of sensitive information stored in the cloud . 

Additionally, the potential for service disruptions and downtime raises the stakes, impacting the 

reliability of cloud services and hindering seamless operations for businesses and individuals alike. 

The issue of data transfer bottlenecks may impede the efficient operation of data-intensive 

applications, affecting the performance for users across different sectors. These security concerns 

collectively underscore the need for a comprehensive and nuanced approach to safeguarding data 

and ensuring the resilience of cloud computing systems in catering to diverse consumer needs. 
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Research activity focusing on the security has increased significantly over the years, with an aim 

on mitigating vulnerabilities and ensuring a secure cloud experience. Key areas of investigation 

include addressing data breaches and insider threats through understanding attack vectors, 

enhancing threat detection and prevention mechanisms, and mitigating insider threats with robust 

identity and access management controls (Almutairy, 2017). Sophisticated Advanced Persistent 

Threats (APTs) targeting critical infrastructure and sensitive data have prompted research into 

understanding APT tactics, developing advanced threat detection techniques, and fortifying cloud 

infrastructure resilience. The shared responsibility model in cloud security has been scrutinized, 

leading to efforts in clarifying responsibilities, improving communication and collaboration 

between Cloud Service Providers (CSPs) and consumers, and developing shared security tools and 

frameworks (A Systematic Literature Review on Cloud Computing Security: Threats and 

Mitigation Strategies | IEEE Journals & Magazine | IEEE Xplore, n.d.). The susceptibility 

of cloud environments to DoS and DDoS attacks has spurred research in developing advanced 

mitigation techniques, enhancing cloud provider DDoS mitigation capabilities, and raising 

consumer awareness. Emerging technologies and threats, such as securing containerized 

environments, addressing cloud security in the Internet of Things (IoT), and exploring privacy-

preserving cloud computing, are also focal points of research [4].  

In this study, we propose a novel deep learning model integrated with Support Vector Machines 

(SVM) to enhance the security of cloud workflows. This model addresses the critical research gap 

in anomaly detection for cloud workflows, which often suffer from complex non-linear 

relationships between patterns and threats. Our approach tackles this challenge by combining the 

robust classification capabilities of SVM with the flexibility and generalization abilities of deep 

learning. Specifically, we integrate a deep neural network for feature extraction with an SVM 

classifier. We evaluate our approach on benchmark intrusion detection datasets NSL-KDD which 

contain normal and anomalous workflow patterns simulating real-world cloud environments. Our 

methodology involved preprocessing the datasets, training the integrated deep learning-SVM 

model, and testing its anomaly detection performance against other baselines. 

 

II CLOUD COMPUTING ARCHITECTURE 

 

Fig. 1 Cloud computing architecture. Source: Author  
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In this section we will discuss about the overall structure of the cloud commuting platform as a 

whole. Cloud computing is a complex and dynamic ecosystem involving various participants and 

roles which is shown in Fig. 1. At the heart of this ecosystem lies the cloud consumer, who uses the 

expertise of the cloud provider to access and utilize cloud services. The cloud provider manages a 

wide rang of services, starting with the service layer, where applications are deployed and executed. 

Beneath this layer lies the resource abstraction and control layer, which allocates physical resources 

such as servers and storage to support the applications. At the foundation of the cloud infrastructure 

is the physical resource layer, which houses the hardware and facilities that power the cloud 

services. Beyond orchestration, the cloud provider assumes several other responsibilities. The cloud 

service management team handles the business aspects of cloud computing, including billing, 

customer support, and service provisioning. They ensure smooth service delivery and provide 

personalized configurations to meet the unique needs of each consumer. Security and privacy are 

paramount in cloud computing. The cloud provider's security team implements various measures to 

protect data and systems from unauthorized access and attacks. These measures include firewalls, 

intrusion detection systems, and encryption. The privacy team, on the other hand, establishes 

policies and procedures to safeguard data confidentiality and ensure compliance with relevant 

regulations. In addition to the cloud provider, other participants also play crucial roles in the cloud 

computing ecosystem. Cloud auditors independently assess the security, privacy, and performance 

of cloud services. They provide assurance to consumers that the services meet the required standards 

and regulations. Cloud brokers act as intermediaries between cloud consumers and cloud providers. 

They offer consulting services, help consumers select the most appropriate cloud services, and 

negotiate pricing and service level agreements. The intricate interplay of these participants and roles 

ensures the smooth functioning and continuous evolution of the cloud computing ecosystem. This 

collaboration empowers individuals and organizations with scalable, secure, and accessible 

computing power, driving innovation and transforming industries worldwide. 

 

Fig. 2 Overall security deployment process in the cloud with the proposed DL model. Source: Author 
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III  CLOUD COMPUTING SECURITY 

The robust security of cloud workflows relies on a two-pronged approach, the Work Deployment 

Module (WDM) and the Security Enforcement Module (SEM). The overall process with the 

proposed DL model integrated in the system is shown in Fig. 2. These modules operate 

spontaneously to guarantee workflow protection in the cloud environment.  

The WDM lays the groundwork for secure workflow execution. It establishes comprehensive 

specifications including functional, quality, and security aspects. These specifications guide the 

deployment process, ensuring that workflows not only operate as intended but also adhere to 

stringent security principles. The functional specifications define the workflow's desired 

functionalities, while the quality specifications set performance and reliability standards. Most 

importantly, the security specifications dictate the measures implemented to safeguard against 

potential threats. This multi-faceted approach lays a solid foundation for secure workflow operation. 

Once deployed, the SEM takes over the mantle of safeguarding the workflow. It employs real-time 

monitoring to continuously track workflow metrics related to data anomalies, task deviations, and 

other relevant parameters. This constant vigilance allows for the early detection of potential security 

threats. Upon identifying an anomaly, the SEM triggers an adaptation process. This process involves 

the training of deep learning models to refine anomaly detection accuracy and the proposal of 

mitigation strategies to address the specific security risk. Through a robust evaluation process, the 

most effective mitigation strategy is then implemented, further bolstering the workflow's resilience 

against evolving threats. 

The interaction between these modules is facilitated by the cloud infrastructure. This infrastructure 

serves as a conduit for updates, expert analysis, and the continuous refinement of the overall 

security enforcement process. Through this interconnectivity, the system ensures that the WDM's 

secure specifications are translated into effective real-time protection by the SEM, culminating in a 

dynamic and adaptable security framework for cloud workflows. 

IV  PROPOSED DEEP LEARNING MODEL 

In this section, we propose a deep learning model that integrates Support Vector Machines (SVM) 

algorithm to enhance the security of cloud workflows. The proposed model combines the strengths 

of SVM's robust classification capabilities with the flexibility and generalization abilities of deep 

learning models. The proposed model consists of two main components a deep neural network 

(DNN) for feature extraction and an SVM classifier for anomaly detection which is shown in Fig. 

3 Proposed Deep Learning model. The DNN is trained on a large dataset of normal workflow 

patterns to learn the underlying features that distinguish normal from anomalous behavior. Once 

the DNN has extracted the relevant features, the SVM classifier is used to classify the workflow 

patterns as normal or anomalous. 

The SVM classifier is trained using a dataset of labeled workflow patterns, where each pattern is 

associated with a label indicating whether it is normal or anomalous. The SVM classifier uses a 

kernel function to map the input data into a higher-dimensional space, where it can be linearly 

separated into different classes. Once the SVM classifier has been trained, it can be used to classify 

new workflow patterns in real-time. The classifier outputs a probability score indicating the 

likelihood that a given workflow pattern is anomalous. The threshold for anomaly detection can be 

adjusted based on the requirements of the specific application. The proposed model offers several 

advantages over traditional anomaly detection methods. Firstly, it can handle complex and non-

linear relationships between workflow patterns and anomalies, which is not always possible with 

traditional methods. Secondly, it can learn from experience and adapt to changing security threats 

over time, which is essential in today's dynamic and evolving security landscape. Finally, it can 

provide granular insights into the root causes of anomalies, which can help security teams to quickly 

identify and remediate security vulnerabilities. 
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Fig. 3 Proposed Deep Learning model 

A SVM WITH DEEP LEARNING 

The initial layer of a Support Vector Machine (SVM) is a linear layer responsible for processing 

input data and generating a series of feature vectors. This output then serves as the input for the 

subsequent layer, often designed as a non-linear layer. Let 
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where 𝑁 denotes the number of features, and 𝑛 is the number of samples. Additionally, let 
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be the weight vector, with 𝑤𝑖 signifying the weight corresponding to the 𝑖𝑡ℎ feature. The output of 

the first layer, 
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can be computed using the formula 

 𝑦𝑖 = 𝜎(𝑊𝑇 . 𝑥𝑖 ) (4) 
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Here, 𝜎 represents the sigmoid function, which transforms the input into a value within the range 

of 0 to 1. The sigmoid function is defined as 

 𝜎(𝑧) =
1

1+𝑒−𝑧 (5) 

During the training process, the weight vector 𝑊 is learned and utilized to transform the input data, 

effectively mapping it to a higher-dimensional space. The resulting output 𝑌 comprises feature 

vectors, which, in turn, serve as input for subsequent layers. In essence, the first layer of an SVM 

operates as a linear layer, producing an output that is a linear combination of the input features. The 

weights 𝑊 are learned through training and contribute to the computation of the layer's output. The 

introduction of the sigmoid function injects non-linearity into the model, enabling the SVM to 

capture more intricate relationships between input features and the output. 

V DATASET AND PERFORMANCE PARAMETERS 

In this section, we will discuss the performance parameters and metrics used to evaluate the 

effectiveness of proposed deep learning (DL) methods in cloud computing cybersecurity. These 

parameters are essential for assessing the accuracy and robustness of DL models in detecting and 

classifying cyber threats. We will also introduce the commonly used datasets in cybersecurity for 

training and evaluating DL models. The performance parameters for DL models in cybersecurity 

include precision, accuracy, recall, and F1 score and so on. These parameters are used to measure 

the model's ability to correctly identify true threats and benign cases. 

B DATASETS 

In this study, we have utilized the NSL KDD IDS datasets to train and evaluate our proposed IDS 

model. The NSL KDD datasets are a collection of datasets developed by the National Security 

Laboratory (NSL) and the Knowledge Discovery and Data Mining (KDD) community, which are 

widely used in the field of cloud computing security for training and evaluating IDS models. The 

NSL KDD IDS datasets contain various types of network traffic data, including HTTP, FTP, and 

DNS traffic, as well as attack traffic such as buffer overflows, SQL injection, and DDoS attacks. 

These datasets are characterized by their variety, volume, complexity, and labeling, which make 

them an ideal choice for training and evaluating IDS models. The use of the NSL KDD datasets in 

cloud computing security is crucial for several reasons. Firstly, cloud computing environments are 

vulnerable to a wide range of threats, including malware, DDoS attacks, and unauthorized access. 

Secondly, the sheer volume of traffic in cloud computing environments makes it challenging to 

detect and respond to threats in real-time. Finally, the dynamic nature of cloud computing 

environments makes it essential to have IDS models that can adapt to changing threats and 

environments. By utilizing the NSL KDD IDS datasets, we can train and evaluate IDS models that 

can detect and respond to threats in real-time, while also adapting to the dynamic nature of cloud 

computing environments. 

1 CIC DOS DATASET (2017) 

The CIC DoS Dataset (2017) is a comprehensive dataset designed for the analysis and evaluation 

of Denial of Service (DoS) attacks. It encompasses network traffic data generated in a controlled 

environment to simulate various DoS attack scenarios. This dataset provides a diverse range of 

features, including network flow characteristics, packet-level details, and attack labels, making it a 

valuable resource for studying and developing intrusion detection systems (IDS). In the context of 

cloud computing, where the dynamic and distributed nature of systems introduces unique security 

challenges, the CIC DoS Dataset serves as a crucial benchmark. By utilizing this dataset, 

researchers and practitioners in cloud computing security can train and evaluate intrusion detection 

models specific to DoS attacks. The dataset enables the development of robust and adaptive IDS 

for cloud environments, enhancing the overall resilience of cloud-based systems against disruptive 

DoS activities. Its relevance lies in its ability to contribute to advancements in security measures, 

ensuring the integrity and availability of cloud services in the face of evolving cyber threats (DoS 

2017 | Datasets | Research | Canadian Institute for Cybersecurity | UNB, n.d.). 
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2 INTRUSION DETECTION EVALUATION DATASET (CIC-IDS2017) 

The Intrusion Detection Evaluation Dataset (CIC-IDS2017) stands as a resource for advancing the 

field of intrusion detection, particularly within the dynamic landscape of cloud computing (IDS 

2017 | Datasets | Research | Canadian Institute for Cybersecurity | UNB, n.d.). This dataset 

encompasses a rich collection of network traffic data, featuring a diverse array of cyber threats and 

normal activities. Its significance in the world of cloud computing lies in its potential to serve as a 

foundational benchmark for the development and evaluation of intrusion detection systems (IDS) 

tailored to the unique challenges posed by cloud environments. By leveraging the CIC-IDS2017 

dataset, researchers and practitioners in cloud security can effectively train and validate intrusion 

detection models, fine-tuning them to discern between normal cloud traffic and various cyber 

threats, including sophisticated attacks. The dataset's real-world relevance ensures that the IDS 

developed using this dataset can be adeptly applied to safeguard cloud infrastructures, contributing 

to the ongoing efforts to fortify cloud systems against intrusion attempts. The use of CIC-IDS2017 

in research and development endeavors facilitates the creation of robust and adaptive intrusion 

detection mechanisms tailored to the intricacies of cloud computing, ultimately enhancing the 

overall security posture of cloud-based data systems. 

C PERFORMANCE PARAMETERS 

The performance parameters and metrics for Deep Learning (DL) methods in cybersecurity vary 

depending on the specific task and application. However, some of the most commons parameters 

are Precision, Accuracy, Recall and F1 Score. These parameters depend on the following detection 

accuracy 

Detection Accuracy: 

• True Positive Rate (TPR): The proportion of true threats correctly identified. 

• False Positive Rate (FPR): The proportion of benign cases incorrectly identified as threats 

(false alarms). 

• True Negative Rate (TNR): The proportion of benign cases correctly identified. 

• False Negative Rate (FNR): The proportion of true threats incorrectly identified as benign 

(missed detections). 

Accuracy: The overall correctness of the DL model in classifying instances as either normal or 

malicious. It is calculated as the ratio of correctly predicted instances to the total instances. 

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (6) 

Precision: Precision measures the accuracy of positive predictions made by the model. It is the 

ratio of true positives to the sum of true positives and false positives. High precision indicates a low 

rate of false positives. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (7) 

Recall (Sensitivity): Recall measures the ability of the model to identify all relevant instances, 

particularly the true positives. It is the ratio of true positives to the sum of true positives and false 

negatives. 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8) 

F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a balance between 

precision and recall, taking into account false positives and false negatives. 

 𝐹1 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑖𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

Geometric Mean: To find the geometric mean we have to find the Specificity 

 Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (10) 
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 G. mean = √Sensitivity × Specificity (11) 

AUC: The AUC is the area under the ROC curve, which is a graph that shows the relationship 

between the TPR and FPR at different thresholds. The ROC curve is a plot of the TPR against the 

FPR, and it provides a visual representation of the trade-off between the two. To calculate the AUC, 

we first calculate the True Positive Rate (TPR) and False Positive Rate (FPR) at different thresholds 

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (12) 

Then we plot the TPR against the FPR to create the ROC curve. The ROC curve shows the 

relationship between the TPR and FPR at different thresholds. AUC can be calculated using the 

trapezoidal rule or Simpson's rule as given below - 

 Trapezoidal_𝐴𝑈𝐶 =
1

2
∑ (𝑇𝑃𝑅𝑖 + 𝑇𝑃𝑅𝑖−1)

𝑛
𝑖=1 ⋅ (𝐹𝑃𝑅𝑖 − 𝐹𝑃𝑅𝑖−1) (13) 

 Simpson_𝐴𝑈𝐶 = ∫ (𝑇𝑃𝑅(𝑥) − 𝐹𝑃𝑅(𝑥))
1

0
, 𝑑𝑥 (14) 

VI  RESULTS 

The proposed deep learning model was evaluated on the NSL KDD datasets and its performance 

was compared against other state-of-the-art methods. The key evaluation metrics used were F1 

score, AUC, and geometric mean which are commonly reported for intrusion detection tasks. 

 

Fig. 4 Performance parameters comparison 

Table 1 summarizes the performance of different models on the NSL KDD dataset. As seen, the 

proposed model achieves the best F1 score of 0.831, outperforming the original SVM model and 

other benchmark methods. This indicates the proposed model can more accurately detect both 

normal and anomalous instances in the imbalanced NSL KDD dataset.  

Table 1 Performance parameters comparison 

 
SVM SMOTE

-SVM  

(Mishra 

et al., 

2017) 

Balance 

Cascade 

(Cao et al., 

2019)  

ACGAN 

 

(Dal 

Pozzolo 

et al., 

2013) 

CVAE 

 

(Makhzan

i et al., 

2016) 

CAAE 

 

(Praseed 

& 

Thilagam

, 2019) 

Proposed 

Model 

F1 0.772 0.788 0.797 0.821 0.822 0.828 0.831 

AUC 0.570 0.688 0.620 0.712 0.736 0.738 0.732 

GEO  0.585 0.615 0.657 0.690 0.700 0.708 
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In terms of AUC, the CVAE and CAAE models achieve slightly higher values than the proposed 

model, however, the proposed model surpasses all other methods in terms of geometric mean, 

demonstrating its ability to balance precision and recall. The models were further evaluated on the 

CICIDS2017 dataset containing realistic modern attacks. As shown in Table 2, on this more 

complex dataset, the proposed model achieves an F1 score of 0.92, AUC of 0.86 and geometric 

mean of 0.89, outperforming the other approaches. This validates the effectiveness of the proposed 

model in detecting a wide range of contemporary threats with high accuracy. 

Through its integration of deep feature learning and SVM classification, the proposed model is able 

to capture complex patterns in network traffic that are indicative of anomalies. The results 

demonstrate its superior performance over other state-of-the-art methods for intrusion detection in 

cloud environments. The model can efficiently learn representative features directly from raw 

network traffic and accurately discriminate between normal and attack instances. 

VII CONCLUSIONS 

In this paper, we proposed a novel deep learning model that integrates Support Vector Machines 

(SVM) algorithm to enhance the security of cloud workflows. Our proposed model combines the 

strengths of SVM's robust classification capabilities with the flexibility and generalization abilities 

of deep learning models. The model consists of two main components: a deep neural network 

(DNN) for feature extraction and an SVM classifier for anomaly detection. The DNN is trained on 

a large dataset of normal workflow patterns to learn the underlying features that distinguish normal 

from anomalous behavior. Once the DNN has extracted the relevant features, the SVM classifier is 

used to classify the workflow patterns as normal or anomalous. Our proposed model offers several 

advantages over traditional anomaly detection methods. Firstly, it can handle complex and non-

linear relationships between workflow patterns and anomalies, which is not always possible with 

traditional methods. Secondly, it can learn from experience and adapt to changing security threats 

over time, which is essential in today's dynamic and evolving security landscape. Finally, it can 

provide granular insights into the root causes of anomalies, which can help security teams to quickly 

identify and remediate security vulnerabilities. 

Despite its promising performance, our study acknowledges certain limitations that require further 

investigation. Firstly, the evaluation relied on simulated datasets, potentially overlooking the 

complexities and intricacies of real-world cloud workflows. Additionally, the study focused on 

specific anomaly types, and its generalizability to a broader range of threats remains unexplored. 

Real-world cloud deployments necessitate testing on large and diverse datasets to validate the 

model's adaptability and accuracy. Moreover, our study primarily considered single-agent attacks. 

Cloud systems often face multi-stage or coordinated attacks requiring more sophisticated detection 

mechanisms. Future research should evaluate the model's performance against these complex attack 

scenarios to assess its resilience in realistic settings. 

Building upon this study, future research can explore several avenues to further enhance cloud 

workflow security with deep learning. Integrating advanced architectures like recurrent neural 

networks could capture temporal dependencies within workflow data, potentially leading to even 

more accurate anomaly detection. Additionally, developing dynamic adaptation mechanisms would 

enable the model to automatically adjust its parameters based on real-time changes in the cloud 

environment and evolving threat landscapes, ensuring sustained effectiveness against emerging 

threats. Finally, extensive testing on real-world datasets and comprehensive evaluation against 

advanced attack scenarios are crucial to refine the model and validate its practical viability for 

securing cloud infrastructures. 
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