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Abstract  

This study delves into the application of the AlphaZero algorithm to Gomoku, a classic board 

game. Unlike traditional AI methods, AlphaZero learns and strategizes without human input. 

Our research contrasts AlphaZero's innovative approach with the Monte Carlo tree search 

technique, highlighting its advanced capabilities in strategic decision-making. The findings 

reveal AlphaZero's remarkable proficiency in mastering the complexities of Gomoku, 

marking a significant advancement in artificial intelligence's role in game strategy and 

decision-making. This paper provides a comprehensive analysis of AlphaZero's learning 

process and strategic execution in Gomoku, offering insights into the future of AI in strategic 

gaming. 

 

Introduction  

Reinforcement learning (RL) is a pivotal and rapidly advancing domain within contemporary 

artificial intelligence research. It offers a distinctive framework wherein agents progressively 

improve their performance not through explicit instruction but through continual interaction 

with their surroundings [1, 2]. As these agents take actions in a given environment, they are 

provided feedback in the form of either rewards for desirable actions or penalties for 

undesirable ones [3]. This trial-and-error mechanism aids the agents in understanding the 

consequences of their actions and refining their strategies accordingly. The primary goal of RL 

is to determine an optimal strategy, often termed as a "policy", which instructs the agent on the 

best possible action to take in any given situation. The optimal policy is one that, when 

followed, will lead to the maximization of the cumulative rewards over a period, ensuring that 

the agent’s actions result in the most favorable outcomes in its environment. Board games, with 

their intricate complexities and well-defined reward structures, make a fitting domain for RL, 

offering a perspective ripe for academic inquiry. MCTS (Monte Carlo tree search) [4] has 

emerged as a leading algorithm for decision-making in these complex environments. Recently, 

deep learning catalyzed groundbreaking developments in diverse research domains, from 

computer vision and natural language processing to state-of-the-art recommender systems [5, 

6, 7]. It constructs a search tree by exploring possible future moves, using statistical sampling 

to evaluate the potential outcomes. It constructs a search tree by exploring possible future 

moves, using statistical sampling to evaluate the potential outcomes. Bridging the gap between 

RL and MCTS, the original AlphaGo [8] algorithm showcased a fusion of deep learning and 

tree search techniques, revolutionizing the game-playing AI landscape. This groundbreaking 

approach further evolved with the introduction of AlphaZero [9], which uses zero human 
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knowledge and experience in this game and removes the supervised learning stage. It allows 

the algorithm to master the game with self-learning only. 

Gomoku, often referred to as "Five in a Row," is usually played on a 15x15 grid (though 

variations can feature larger grids). The game’s objective is straightforward yet captivating: 

two players, typically designated as black and white, take turns placing stones on the board 

with the aim to align five of their own stones consecutively in a vertical, horizontal, or diagonal 

line. The game’s seemingly simple rules mask a depth of strategy. Early moves tend to be 

concentrated around the center of the board, providing players with maximal opportunities to 

expand and form their sequences. As the game progresses, the board transforms into a complex 

battleground of potential sequences, blocked attempts, and intricate traps. The nature of the 

game allows for both defensive and offensive tactics. A player might focus on preventing their 

opponent from completing a sequence, or strategically placing their stones to create multiple 

potential winning avenues simultaneously. Its straightforward rules combined with its profound 

complexity make it an ideal candidate for studying artificial intelligence’s prowess and 

potential in mastering classic board games. In recent decades, there have been concerted efforts 

to solve Gomoku using computational methods. One notable attempt was by Allis [10], who 

employed proof-number search algorithms to analyze specific game positions and paths, 

making significant strides in understanding the game’s complexities. Another significant 

contribution came from Chen [11], who utilized pattern recognition and threat-space search 

techniques to advance AI capabilities in Gomoku, offering a fresh perspective on potential 

winning strategies. 

Driven by the recent monumental strides in board game artificial intelligence, especially the 

unparalleled triumphs of the AlphaZero algorithm, we were compelled to believe that 

harnessing this cutting-edge approach for the game of Gomoku was not only feasible but 

imperative. In embarking on this ambitious journey, our contributions to the Gomoku AI 

research landscape manifest in two significant dimensions: 

1. We generalized the AlphaZero approach for the Gomoku game, achieving impressive 
results. Initiating from a state of random play, and without any domain knowledge apart 
from the game rules, our model swiftly learned a winning strategy on a 6x6 table after 
just a few hours of training on an economical GPU. 

2. We embarked on an extensive research endeavor, wherein we juxtaposed the efficacy 
of our refined AlphaZero methodology against a conventional method that exclusively 
leverages the Monte Carlo tree search (MCTS). Our aim was to critically assess how 
these two distinct techniques fare in terms of both efficiency and effectiveness under 
comparable conditions, to shed light on their relative strengths and potential areas of 
improvement. 

Method 

2.1 Value and Policy Network 

Deep neural network in AlphaZero [9] and AlphaGo [8] often employs two primary neural 

networks: the Value Network (V ) and the Policy Network (π). 

• Value Network (V ): This network estimates the value of a given state, i.e., the expected 
outcome from that state. Formally, for a given state s, V (s) predicts the expected 
outcome, with values close to +1 indicating favorable outcomes for the player and 
values close to -1 indicating unfavorable outcomes. 
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 V (s) ≈ E[r|s] (1) 

where E is the expectation and r is the eventual reward. 

• Policy Network (π): This network provides a probability distribution over all possible 
moves from a given state. For a state s and an action a, π(a|s) represents the probability 
of taking action a as a highly optimized game player. 

 π(a|s) = P(a is the best move | s) (2) 

The neural network structure we use is shown in Figure 1. 

 

Figure 1: Value and Policy Networks 

2.2 Monte Carlo Tree Search (MCTS) 

Monte Carlo Tree Search (MCTS) stands out as a revolutionary algorithm, reshaping decision-
making processes in intricate environments through the methodical construction of a search 
tree. At its core, the algorithm meticulously evaluates prospective game moves, striking a 
harmonious equilibrium between the dual tenets of exploration (unearthing new moves) and 
exploitation (leveraging known advantageous moves). The integration of Policy and Value 
networks into this framework bestows it with unparalleled depth and precision: 

• The Policy Network, through its discerning output, serves as the beacon guiding the 
expansion of the search tree. Instead of branching out indiscriminately, it casts the 
spotlight on moves radiating promise and potential, ensuring that the exploration 
process remains strategic and focused. 

• On the other hand, the Value Network steps in as an adept evaluator, meticulously 
scrutinizing leaf nodes within the tree. This network diminishes the traditional reliance 
on random rollouts for evaluation, infusing the process with a heightened level of 
precision. This capability not only speeds up the evaluation but also endows it with a 
more profound insight into the game’s dynamics. 

In essence, the Policy Network acts as a compass, navigating the vast possibilities in the MCTS 

landscape and directing it towards potentially rewarding paths. Simultaneously, the Value 

Network functions as an astute analyst, swiftly gauging the potential outcomes of different 

game scenarios. Their synergistic interplay ensures that the search process within MCTS 

remains both streamlined and enriched, leading to decisions that are both efficient and 

strategically sound. 

2.3 Environment and Supervised Learning 
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Within the realm of reinforcement learning, our agent actively interacts with a specially-

designed Gomoku gaming environment, drawing feedback in the form of rewards or penalties 

based on its moves. As depicted in Figure2, we meticulously implemented a Gomoku game 

board that closely mirrors traditional gameplay. Given the computational overhead associated 

with larger boards, we strategically focused our experimental investigations on boards sized 

6×6, targeting a 4-in-a-row win condition, and 8 × 8, targeting the standard 5-in-a-row. To 

provide a comprehensive representation of each game state, we innovatively devised four 

distinct binary feature matrices. These matrices encapsulate essential game facets, including 

the current player’s move, the adversary’s move, the most recent move, and the initiating 

player. Notably, these matrices not only serve as a holistic game state representation but also 

act as pivotal input layers for our deep learning neural network. In terms of game mechanics, 

we faithfully incorporated Gomoku’s conventional victory criteria. Moves are delineated at 

board intersections, eschewing placement within board squares. Traditionally, the white player 

initiates the game, with both players alternating their moves in succession until a conclusive 

game outcome is achieved. The essence of the game revolves around players positioning a 

stone of their chosen color on an unoccupied intersection. Triumph is heralded by the first 

player to strategically place five of their stones consecutively, irrespective of orientation - 

horizontal, vertical, or diagonal. In the rare scenario where the board reaches saturation without 

either contender achieving the coveted five-in-a-row, the game is ceremoniously declared a 

stalemate. While Gomoku might superficially seem straightforward, it belies a profound 

strategic depth, characterized by its myriad winning patterns and tactical nuances. 

Gomoku’s strategic intricacies are underscored by the delicate balance and importance of 
specific board configurations, notably the ’threes’ and ’fours’. These patterns play pivotal roles 
in dictating the pace and outcome of a match. When leveraged effectively, they can swiftly shift 
the advantage to one player, often pushing the opponent into a corner from which recovery 
becomes arduous. 

Diving into the nuances, the ’four’ configuration is a fascinating tactical alignment where four 

stones of identical color stand in unison, beckoning a potential game-winning fifth stone in the 

subsequent move. The looming threat of this alignment is palpable, sending clear signals of an 

impending victory. Recognizing this, an opponent is thrust into a defensive mode, compelled 

to respond instantly. Failure to address this sequence by obstructing the alignment invariably 

results in a loss, testament to its lethal efficacy. 

Equally compelling, yet distinct in its strategic implications, is the ’fork’ configuration. In this 

maneuver, a player crafts a masterstroke with a single move, spawning two formidable attack 

sequences in tandem. The duality of the threat is what sets the ’fork’ apart: it presents a dual 

quandary that the opponent must navigate. The challenge is steep; it’s nearly impossible to 

stymie both threats concurrently. Thus, successfully engineering a fork is often tantamount to 

clinching the game, rendering the adversary powerless in the face of this double-edged assault. 

To truly appreciate the visual elegance and tactical profundity of these configurations, one can 

refer to Figure 3 and Figure 4. These illustrations vividly capture the essence of ’threes’, ’fours’, 

and the enigmatic ’fork’, underscoring their pivotal roles in the beautiful complexity of 

Gomoku. 
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Figure 2: Gomoku game board from our implementation 

 

Figure 3: ’Four’ winning pattern 

Result 

Our experimentation painted an optimistic picture when applying the AlphaZero methodology 

to the Gomoku game. Significantly, our rendition not only succeeded but boasted an 

impeccable 100% victory rate as the initiating player during self-play assessments. Moreover, 

as the succeeding player, the algorithm manifested a keen aptitude for defense, coupled with a 

proactive stance towards 
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Figure 4: ’Fork’ winning pattern 

 

Figure 5: Compare AlphaZero with MTCS 

identifying and capitalizing on counterattack chances. A detailed exemplification of this 

nuanced behavior is cataloged in Appendix I. 

In our research, we undertook an in-depth comparative study, juxtaposing the performance of 

the 

AlphaZero approach against the traditional Monte Carlo tree search (MCTS) method. To 

furnish a comprehensive perspective, we analyzed a spectrum of iterations, spanning from 500 

to 2500 in number. The ensuing patterns and performance distinctions are graphically 

represented in Figure 5. The empirical data unambiguously accentuates AlphaZero’s superior 

efficacy, as it continually eclipses the performance benchmarks set by the MCTS method. 
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Conclusion 

We meticulously crafted a simulation environment tailored for the game of Gomoku and, within 

this context, developed a specialized agent. By adopting and integrating the AlphaZero 

methodology into our platform, we were able to achieve not only functional outcomes but also 

results that exceeded our initial expectations. These findings underscore the profound efficacy 

of the AlphaZero technique in mastering intricate board games, such as Gomoku, 

demonstrating its versatility and robustness in diverse gaming scenarios. 
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Appendix I 

This section showcases a set of self-play match results on a 6 × 6 board, where a sequence of 

four consecutive pieces leads to a win. In the presented board, the ’x’ pieces represent the first 

player, while the ’o’ pieces symbolize the second player. The darker shades on the board 

correspond to positions where the policy network predicted a stronger advantage. 

 

Figure 6: Example step 1 

 

Figure 7: Example step 2 
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Figure 8: Example step 3 

 

Figure 9: Example step 4 

 

Figure 10: Example step 5 
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Figure 11: Example step 6 

 

Figure 12: Example step 7 

 

Figure 13: Example step 8 
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Figure 14: Example step 9 

 

Figure 15: Example step 10 

 

Figure 16: Example step 11 
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Figure 17: Example step 12 

 

Figure 18: Example step 13 

 


