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Abstract 

This study introduces an innovative multi-variate triple-regression algorithm designed 

to forecast personalized airborne-pollen allergy seasons over extended periods. Our 

approach begins with preprocessing, where we integrate historical pollen data with 

inferential signals from various covariates, including meteorological information. The 

algorithm comprises three sequential regression stages: the first stage employs a 

regression model to predict the allergy season's start and end dates using a feature matrix 

derived from 12 time series covariates with a rolling window technique. The second 

stage predicts the uncertainty of these dates based on the feature matrix and Stage 1 

outcomes. Finally, the third stage uses a weighted linear regression model, leveraging 

results from the previous stages, significantly enhancing forecasting accuracy and 

reducing uncertainty. This algorithm allows for individual customization based on 

varying pollen-triggered allergy sensitivities. Our backtesting results show a mean 

absolute error of 4.7 days, underscoring the potential of this method for both general and 

long-term allergy season predictions. 

 

INTRODUCTION 
Airborne-pollen allergy is prevalent, affecting up to 40% of the total population worldwide [1,2]. The long-term 

customized forecasting of pollen allergy provides individuals with guidance for travel planning and medication 

planning [3]–[5]. For pharmaceutical companies, the demand of medication for pollen allergy treatment, in addition 

to the sales and operations planning for supply chain management, further necessities the forecasting of the start/end 

date of the allergy season [6]–[8]. 

In Fig. 1, the concentration of pollen across the years from 2004 to 2008 is shown. We observe a significant change 

of the start date and end date for varying years with no explicit trend. For example, the allergy seasons in 2005 and 

in 2007 exhibit almost no overlapping; the length of the allergy season in 2004 roughly doubles that in any other 

year. 

For a more rigorous definition of the allergy season tailored for each patient, we introduce the concentration 

threshold δC which is the minimum customized concentration requirement of pollen for a typical day in the allergy 

season, and the number threshold δN which is the minimum number of typical days within a week (7 consecutive 

days) in the allergy season. The start date of allergy season is defined as the day, during the following week of 

which the number of typical days (pollen concentration > δC) is at least δN. Both δC and δN can be customized 

according to different allergy sensitivity level of individuals. For example, if δC = 120 and δN = 4, the standard 

deviation of the start date, the end date and the length of allergy season are 19.9 days, 41.4 days and 47.2 days, 

respectively, from the year 2003 to year 2019. 

Univariate forecasting methodologies, such as Exponential Smoothing, ARIMA and T-BATS, can achieve expected 

performance on time series data with a strong signal of level, trend and seasonality [9]–[11]. In addition to the 

classic univariate models, the use of network and neural network architectures, such as convolutional neural network 

(CNN) and recurrent neural network (RNN) furthers the scope of application [12,13]. Ordinary/Partial differential 
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equations used widely in the field of physics and robotics shed light on the machine learning models, further driving 

the univariate forecasting investigation recently [14]–[18]. 

However, univariate forecasting methodologies exhibit underperformance in the context of cyclic intermittency, in 

particular for predicting the start date and the end date of the allergy season [19]. In the scenario of airborne-pollen 

allergy season prediction, the concentration of pollen, primarily produced by plants, is closely dependent on local 

environmental conditions like the weather and geography, necessitating the integration of the meteorological 

information into the forecasting methodology [20,21]. Univariate models, such as Holt-Winters exponential 

smoothing, ARIMA and Facebook Prophet model, are unable to integrate other time-varying covariates, in 

particular the weather information such as the precipitation, temperature and wind [22,23]. 

In this paper, we propose a multi-variate triple-regression algorithm to predict the airborne-pollen allergy season in 

the long term, i.e. the start date and end date of the season. The triggering concentration of the pollen – the definition 

of the allergy season can be customized as aforementioned. The proposed algorithm leverages the inferential signal 

from other covariates to make long-term accurate predictions, and uses a novel three-stage modelling approach to 

improve forecasting performance. In particular, we take into consideration the other 11 covariates including the 

history of temperature, wind and precipitation in addition to the historical data of pollen concentrations. The 

prediction results from early stage(s) are used in later regressions to further improve the accuracy and reduce the 

uncertainty of prediction. 

 
Fig. 1: The concentration of pollen as a function of the n-th day of the year within a 120-day range, i.e. the count 

of pollen in a cubic meter of air, measured per day for the year from 2004 to 2008. The dashed lines indicate 

smoothed trend using the Savitzky–Golay filter, merely serving for the visualization. 

ALGORITHM 
The proposed algorithm encompasses a three-stage regression for the start/end date of the allergy season prediction, 

together with a pre-processing for the feature extraction. The data pipeline and the regression algorithm are outlined 

in Fig. 2. In the pre-processing, a total of Nf (=30) time series selected features are extracted by applying a 14-day 

rolling window to each of the n (=12) original time series vectors xi, including the pollen concentration history, 

temperature history, wind history, participation history, etc. 

The feature matrix corresponding to xi is denoted as 

, and the ensemble feature matrix is . The ensemble feature matrix is then fed into the three-stage 

regression. In Stage 1, a Gradient Boosting model to predict the start/end date is trained on a training set S1 which 

is based on the feature matrix . The ground truth for the start/end date of allergy season is determined 

following the definition after we select appropriate pollen concentration threshold δC and number threshold δN. The 

vector of prediction is given by yˆ . 

In Stage 2, we select another training set S2 based on the feature matrix  and the predicted start/end date 

yˆ from Stage 1 to train another Gradient Boosting model to predict the uncertainty in yˆ. The vector of uncertainty 

is given by uˆ . In Stage 3, we perform a weighted linear regression on yˆ based on the linear 



constraint on start/end date predictions at consecutive days ahead of the allergy season. The weights are assigned 

according to the predicted uncertainty uˆ. Thus, the final predicted start/end date of the allergy season is obtained 

by yˆ∗ = fWL(yˆ)|W = uˆ. 

Although one can opt to terminate the algorithm at Stage 1 when the predictions are already made, we emphasize 

that the three-stage regression can guarantee its uncertainty to be smaller than that using only one-stage regression. 

The proof is given for a simplified problem as follows. 

 
Fig. 2: Data pipeline of the proposed triple-regression algorithm with a nomenclature. The feature matrix from pre-

processing is the input for Stage 1; the outcome from pre-processing and Stage 1 is the input for Stage 2; the 

regression results from Stage 1 and Stage 2 are used in Stage 3. 

We may assume that each prediction in the first-stage regression yˆi follows a Gaussian distribution: 

           (1) 

where the variance σi is assumed to be constant σ0, and µi is theoretically constrained by a linear relationship given 

the predictions are made at consecutive days zi. To set up the problem of a multi-linear regression in general, we 

may consider p independent variables x1,...,xn and one dependent variable y. Suppose we have n(n > p) observations, 

        (2) 

where βi are the coefficients of the i-th dependent variable xi. Our goal is to minimize the sum of the weighted 

squared residuals (errors) i. Thus, the cost function is: 

         (3) 

where the weights wi is provided by the inverse of the uncertainty uˆ2
i|(2) from the regression results in Stage 2, wi = 

1/σi
2|(2) = 1/uˆ2

i|(2). No analytical solution can be obtained for a set of random weights. Without loss of generality, 

we can focus on a simplified scenario with uniform weights, and the linear regression results can be expressed as: 

        (4) 

where E[Y ] is the expectation of random variable Y , Cov(Z,Y ) is the covariance of random variable Z and Y , and 

Var(Z) is the variance of random variable Z. 



 
Fig. 3: Threshold function fth(N), and minimum number of days Nn to reduce uncertainty, as functions of the 

regression coefficient β0 with varying number of days N used for prediction. The shaded area indicates the regime 

where the variance using a three-stage regression is reduced compared with the one-stage regression counterpart. 

Note that β1 is assumed to be 1 under the condition of ideal scenario. 

In the context of predicting the start/end date of the allergy season, the only independent variable in the weighted 

linear regression is the date zi at which the prediction is made. Thus, we only have two non-zero coefficients, β0 and 

β1, to be learned from the regression. The variance of the predicted coefficient can be approximated by [24]: 

, 

It can be shown that σ02 is related to the uncertainty from the Gradient Boosting regression in Stage 1 through the 

following formula: 

           .        (6) 

The final prediction of the start/date date yˆ∗ is given by the z-intercept of the line from the weighted linear 

regression: 

            (7) 

 
Fig. 4: Start date yˆ predicted in Stage 1, as a function of the z-th day of the year 2005, where the error bar 

indicates the standard deviation predicted in Stage 2. Straight lines are the weighted linear regression results with 



different number of predictions considered. (Inset) Final prediction of the start date yˆ∗ predicted in Stage 3, as a 

function of the z-th day of the year. Shaded area indicates the band of standard deviation. 

Thus, the standard deviation of yˆ∗ is approximated by 

 
Utilizing the third-stage regression, we aim for a reduced variance, i.e. . In other words, the 

uncertainty should be reduced from the one-stage regression result. It is obvious that a minimum number of days 

Nn where the predictions are made in Stage 1 is required to guarantee the reduced uncertainty. We can calculate Nn 

by first defining the threshold function: 

 
then setting fth(Nn) to 1, indicating that the uncertainty does not change after the weighted linear regression. 

RESULTS AND DISCUSSION 
To guarantee a reduced uncertainty in the three-stage regression compared with the one-stage regression, we obtain 

the minimum number of days, Nn, used for making predictions. In Fig. 3, we plot the threshold function fth(N) as a 

function of the coefficient β0 with varying N. The shaded area in Fig. 3 indicates the regime where the three-stage 

regression has a reduced uncertainty. 

Therefore, the corresponding minimum number of days Nn for a specific β0 value can be obtained from the threshold 

function which satisfies fth(N) < 1 and has the smallest N among all threshold functions. As β0 increases, the value 

of threshold function increases, reflecting an increased minimum number of days Nn is required. 

We apply the data pipeline and three-stage regression algorithm to the dataset described in Section II to predict the 

start date of the allergy season. The ground truth of the start date of the allergy season is set by the thresholds, δC = 

120 and δN = 4, i.e., for seven consecutive days after the start day, the number of days when the pollen concentrations 

is greater than δC is at least δN. 

In Fig. 4, we show the mean yˆ predicted in Stage 1, and the corresponding error bar, which is the standard deviation 

σ(yˆ) predicted in Stage 2 as functions of the z-th day of the year 2005. The models to predict yˆ and σ(yˆ) are trained 

using the dataset from year 2003 and 2004 respectively. The blue lines in decreasing transparency represent weighed 

linear regression results with increasing number of predictions yˆ used, where the inverse of the uncertainty σ(yˆ) 

serves as the weights. The green circles locates at the z-intercept represents the final prediction made in Stage 3. It 

is manifested in the Fig. 4 (Inset) that the prediction converges to Day 54 as the number of days accounted increases, 

while the actual start date is Day 51 for year 2005. We also performed backtesting for year 2006, 2007 and 2008, 

and a mean absolute error of 4.7 days was achieved using the triple-regression algorithm. 

The intercept of y-axis, coefficient β0, indicates the approximate prediction of the start/end date. 

CONCLUSIONS 
The airborne-pollen allergy season exhibits significant variations in terms of the start/end date and the length of the 

allergy season. Univariate models fail to extract its seasonality or trend and fail to integrate other covariates such 

as the temperature and precipitation. 

In our proposed triple-regression algorithm, (a) the pollen allergy season can be customized based on each 

individual’s allergy sensitivity level, (b) the predictions are obtained based on the historical data of pollen 

concentration together with other 11 covariates, (c) most importantly, the uncertainty of the prediction in Stage 3 

can be reduced given that the minimum number of predictions obtained from Stage 1 is satisfied. The final 

prediction in Stage 3 converges to a mean value with the increasing number of predictions obtained from Stage 1. 

The weighted linear regression further improve the accuracy by integrating the uncertainty predicted in Stage 2. In 



our backtesting, a mean absolute error of 4.7 days was achieved using the triple-regression forecasting algorithm. 

We conclude that this algorithm could be useful in both generic and long-term forecasting problems. 
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