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Abstract 
Traditional methods of assessing wine, which lean heavily on human experts for sensory 

evaluation, are not only time-consuming and expensive but also fraught with 

inconsistencies due to the inherent subjectivity of taste tests. These expert opinions can 

vary widely, as taste perception differs greatly among individuals, leading to a lack of 

standardization in the evaluation process. In this context, there's a growing need for a more 

objective, efficient, and cost-effective method to assess wine quality. Machine learning 

offers a promising solution by automating the quality assessment process, leveraging data 

from physicochemical tests. The aim of this study is to develop and validate a machine 

learning model for accurately predicting wine quality, based on its physicochemical 

properties. It seeks to identify key factors influencing wine quality and compare the 

effectiveness of different machine learning algorithms.  Eight different models were 

applied on the wine quality dataset, and SHAP (SHapley Additive exPlanations) was used 

to identify the key factors of wine quality. All of the algorithms showed high accuracy 

scores. The analysis of wine quality using machine learning models highlighted alcohol 

content as the most influential factor for higher quality, while volatile acidity was 

negatively correlated with quality. SHAP values identified sulphates, alcohol, and volatile 

acidity as key determinants of wine quality. After hyperparameter optimization, the best 

model trial achieved 91.15% accuracy with fine-tuned parameters, although precision and 

F1-Scores for certain classes slightly decreased. The overall accuracy of the model also 

experienced a marginal reduction. Despite these changes, SHAP values continued to 

indicate the importance of sulphates, alcohol, and volatile acidity in the model's decision-

making, highlighting their significant role in defining wine quality. This approach could 

be beneficial for wine distributors, and consumers by offering an objective and scalable 

method for evaluating wine quality. Additionally, understanding how various chemical 

components influence quality perceptions could be useful for wine producers aiming to 

improve their products. 

Introduction  
The wine industry, central to the global beverage market, places immense emphasis on 

wine quality, a factor that significantly impacts consumer preference, brand reputation, and 

market dynamics [1], [2]. In recent years, there has been a noticeable rise in wine 

consumption, a trend driven by evolving consumer tastes, increased awareness of wine 
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varieties, and the cultural integration of wine into various social settings. This rise in 

demand has spurred wine industries worldwide to innovate and refine their production 

techniques [3]–[5]. The goal is to create wines of superior quality while simultaneously 

reducing production costs. This dual objective poses a complex challenge: maintaining or 

enhancing the quality of the wine without incurring prohibitive expenses. The endeavor to 

balance cost and quality has led to significant technological and methodological 

advancements in viticulture and enology, the sciences of grape cultivation and wine 

production. 

Historically, the assessment of wine quality was often a retrospective process, conducted 

towards the end of the wine production cycle. This approach, while traditional, presented 

several drawbacks. Primarily, it meant that a substantial amount of time and resources had 

already been invested before the quality of the product was fully understood. If the wine 

did not meet the desired standards, rectifying flaws or discarding batches led to significant 

financial losses and resource wastage. Furthermore, this late-stage quality assessment did 

not allow for proactive adjustments during the earlier stages of production, which could 

have preemptively improved the wine's quality [6], [7]. To address these issues, the 

industry has increasingly adopted more dynamic and continuous quality monitoring 

techniques. These include various analytical methods, such as chemical profiling and 

sensory evaluations, conducted at different stages of the production process. By doing so, 

winemakers can make real-time adjustments, enhancing overall quality while reducing the 

risk of late-stage failures. 

Determining wine quality remains a subjective and difficult endeavor, largely due to the 

diverse tastes and preferences of consumers. Every individual's taste is unique, leading to 

varying perceptions and appreciations of the same wine. This subjectivity poses a 

significant challenge for winemakers, who strive to cater to a broad market while also 

appealing to specific taste profiles. To navigate this complexity, wineries often employ 

expert tasters and sommeliers, whose trained palates can assess wines in a more 

standardized manner. However, even with expert evaluations, the final judgment often lies 

with the consumers, whose preferences can be influenced by factors beyond taste, such as 

branding, packaging, and marketing [8]. The industry's response has been to diversify its 

offerings, producing a range of wines that cater to different tastes and price points. This 

approach not only accommodates a wide spectrum of preferences but also helps wineries 

to reach broader markets, ensuring their products appeal to both connoisseurs and casual 

drinkers alike [9], [10]. 

Quality of wine is an inherently subjective concept, often defined by the individual 

assessing it. This subjectivity is crucial in the wine industry, where perceptions of quality 

can vary dramatically between experts and non-experts. Wine experts, such as sommeliers 

and enologists, bring a specialized understanding to the evaluation of wine quality. Their 

assessments are deeply rooted in an appreciation of the wine's chemical composition and 

the intricate processes involved in its production. This expert analysis often focuses on 

some aspects of wine, like the balance of flavors, the harmony of its components, and the 

complexity of its aroma. These characteristics are intrinsically linked to the wine's 

chemical makeup, including factors like acidity, tannins, sugar content, and alcohol level. 

Experts detect and appreciate these subtle variations, which significantly contribute to the 

wine's overall quality [11], [12]. 
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In contrast, non-experts, or casual wine consumers, tend to perceive wine quality through 

a different lens. Their assessment is often influenced by factors such as price, branding, 

packaging, and the wine's origin or provenance. These consumers may equate higher prices 

with higher quality, or they might prefer wines from specific regions known for their wine-

making heritage. For many non-experts, the experience of wine consumption is not just 

about the taste but also about the aesthetic and emotional appeal of the wine, which includes 

its presentation and the story behind it [13], [14].  

The physicochemical composition of wine is a central factor in defining its quality. The 

unique combination and concentration of chemicals in each type of wine contribute to its 

distinct flavor, aroma, and color. Although most wines contain similar categories of 

chemicals, it is the precise concentration and balance of these compounds that create a wide 

array of wine profiles. This complexity is what allows for an extensive variety of wines, 

each with its own character and appeal. However, achieving the desired chemical balance 

is often a challenging process. If the quality of the wine is deemed insufficient, particularly 

in terms of its physicochemical composition, rectifying this issue can be a costly and time-

intensive endeavor. This might involve revisiting various stages of the production process, 

from grape selection and fermentation to aging and bottling. Such interventions not only 

increase production costs but also highlight the critical nature of ongoing quality control in 

winemaking, ensuring that each bottle meets the desired standards of excellence, whether 

judged by an expert's palate or a consumer's preferences.  

The advent and advancement of technology have significantly transformed the wine 

industry, especially in how wine quality is assessed and ensured. In the past, much of the 

wine testing and quality control relied on human expertise and traditional methods. 

However, with technological development, manufacturers have increasingly turned to 

sophisticated devices and tools during various development phases. These devices allow 

for more precise and comprehensive testing of wine properties, enabling vintners to gain a 

deeper and more accurate understanding of the wine's quality at every stage of production. 

This shift towards technology-based testing is not just a matter of efficiency; it represents 

a fundamental change in the approach to quality control in winemaking. 

Traditional methods of quality assessment, often reliant on human sensory evaluation, can 

be time-consuming and subject to variability. In contrast, technological tools can quickly 

and consistently measure various aspects of wine, such as acidity, sugar content, alcohol 

level, and tannin structure. By identifying potential quality issues early in the production 

process, winemakers can make necessary adjustments without the extensive costs 

associated with later-stage corrections. This proactive approach to quality control is not 

only more economical but also enhances the overall standard of the wine produced. 

Moreover, the integration of technology in wine production has facilitated the 

accumulation of extensive data on various aspects of the winemaking process. Parameters 

such as the quantity of different chemicals, temperature controls, fermentation rates, and 

aging conditions are meticulously recorded and analyzed. This wealth of data provides a 

comprehensive overview of the production process, offering insights that were previously 

inaccessible or difficult to obtain. The rise of machine learning (ML) techniques has further 

revolutionized this aspect of the wine industry [15], [16]. With the success of ML in various 

fields over the past decade, there have been concerted efforts to apply these techniques to 
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determine wine quality. By analyzing the amassed data, ML algorithms can identify 

patterns and correlations that human experts might overlook. These algorithms can predict 

the quality of wine based on its chemical composition and production conditions, offering 

a powerful tool for winemakers to enhance their products. The application of ML in wine 

quality assessment exemplifies how technology not only streamlines existing processes but 

also opens new avenues for innovation and excellence in the wine industry. 

The integration of advanced technology in wine production has led to a paradigm shift in 

how wine quality is managed and optimized. One of the most significant benefits of this 

technological advancement is the ability to fine-tune various parameters during the 

winemaking process. This precise control over the factors that directly influence wine 

quality allows manufacturers to not only maintain high standards but also to experiment 

and innovate in their wine production. This ability to adjust specific parameters—such as 

temperature, fermentation time, acidity, sugar levels, and tannin concentration—enables 

winemakers to refine the flavor profile, aroma, and overall character of their wines with 

unprecedented accuracy. By altering these variables, manufacturers can enhance certain 

qualities of the wine or even create entirely new flavor profiles. This level of control is 

particularly beneficial in responding to changing consumer tastes and market trends, 

allowing wineries to stay competitive and relevant. 

Moreover, this process of fine-tuning parameters can lead to the development of wines with 

unique and diverse tastes, potentially giving rise to new wine styles or brands. This aspect 

of wine production is especially exciting, as it opens up possibilities for innovation and 

diversification in the wine market. Winemakers can experiment with different 

combinations of grape varieties, fermentation techniques, and aging processes, leading to 

the creation of distinctive wines that can appeal to a wide range of consumers [17], [18]. 

Therefore, the analysis of basic parameters that determine wine quality is not just essential 

for maintaining standards, but it is also a crucial aspect of product development in the wine 

industry. Through careful monitoring and adjustment of these parameters, winemakers can 

craft wines that not only meet but exceed consumer expectations, while also exploring new 

directions in wine production. This evolution in the winemaking process emphasizes the 

importance of technology and data analysis in the continuous evolution and growth of the 

wine industry [16], [19]. 

Physicochemical properties of wine  

Fixed Acidity (g(tartaric acid)/dm³) 

Fixed acidity in wine, typically measured in grams of tartaric acid per cubic decimeter 

(g(tartaric acid)/dm³), is a crucial parameter in winemaking and wine analysis [20]. It 

primarily consists of tartaric and malic acids, which are inherent in grapes. The level of 

fixed acidity in a wine significantly influences its taste, color stability, and microbial 

stability. Wines with higher fixed acidity tend to have a more pronounced tartness, which 

is essential in balancing the sweetness and fruitiness in the wine. The measurement of fixed 

acidity is vital for winemakers to ensure the desired style and quality of the wine, as it 

affects both the sensory properties and the wine's overall stability and aging potential [21].  
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Volatile Acidity (g(acetic acid)/dm³) 

Volatile acidity in wine, expressed as grams of acetic acid per cubic decimeter (g(acetic 

acid)/dm³), is an important indicator of wine quality. This measure primarily reflects the 

concentration of acetic acid, although other volatile acids like formic, butyric, and 

propionic acid can also contribute [22]. Volatile acidity is a byproduct of fermentation and 

can increase due to bacterial activity, particularly if the wine is exposed to air, which 

encourages the growth of acetic acid bacteria. A certain level of volatile acidity can add 

complexity and an appealing edge to the wine's aroma and flavor profile. However, if the 

concentration becomes too high, it can lead to an undesirable vinegar-like taste, indicating 

spoilage. Therefore, controlling and monitoring volatile acidity is crucial for winemakers 

to ensure the wine's quality and palatability [23]. 

Citric Acid (g/dm³) 

Citric acid in wine, measured in grams per cubic decimeter (g/dm³), plays a relatively minor 

but significant role in the wine's overall chemical composition and sensory profile. While 

the predominant acids in wine are tartaric and malic acids, citric acid, naturally present in 

grapes, contributes to a lesser extent [24]. Citric acid can influence the wine's freshness 

and flavor. It is less stable than tartaric and malic acids and can undergo microbial 

fermentation, leading to the formation of other compounds like diacetyl, which imparts a 

buttery flavor to the wine. Additionally, citric acid may be used in small quantities during 

winemaking for acid adjustments, particularly in wines that need a slight increase in acidity 

for balance. However, its use is carefully controlled, as excessive amounts can lead to 

undesirable flavors and increased vulnerability to certain bacterial spoilage [25]. 

Residual Sugar (g/dm³) 

Residual sugar in wine, quantified as grams per cubic decimeter (g/dm³), refers to the 

sugars left in the wine after the fermentation process is complete. These sugars are 

primarily fructose and glucose, originally present in the grapes. The amount of residual 

sugar in a wine can vary widely, from virtually none in dry wines to high levels in sweet 

wines. The level of residual sugar determines the sweetness of the wine and can influence 

its body and overall mouthfeel. Residual sugar is not just a taste element; it also plays a 

role in the wine's stability and aging potential. Wines with higher residual sugar levels can 

be more prone to microbial spoilage, necessitating careful winemaking and storage 

practices. Winemakers carefully monitor and control residual sugar to achieve the desired 

balance, sweetness, and style of the wine. 

Chlorides (g(sodium chloride)/dm³) 

Chlorides in wine, specifically measured as grams of sodium chloride (NaCl) per cubic 

decimeter (g(sodium chloride)/dm³), are a minor but notable component of a wine's overall 

composition. The presence of chlorides mainly originates from the soil where the grapes 

are grown, as well as from certain winemaking practices. While chloride levels in wine are 

generally low, they are an important parameter to monitor because they can influence the 

taste and mouthfeel of the wine. Higher levels of chlorides can give a salty character to the 

wine, which in some styles, particularly in certain white wines, can enhance complexity 

and flavor. However, excessively high levels of chlorides can be undesirable, potentially 

leading to an imbalanced taste and issues with wine stability [26].  
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Free Sulfur Dioxide (mg/dm³) 

Free sulfur dioxide (SO₂) in wine, measured in milligrams per cubic decimeter (mg/dm³), 

is a critical component in winemaking due to its antioxidant and antimicrobial properties. 

Sulfur dioxide helps in preserving the freshness, color, and stability of the wine by 

preventing oxidative spoilage and inhibiting the growth of undesirable microorganisms, 

including bacteria and wild yeasts. The level of free sulfur dioxide is the portion of the total 

sulfur dioxide that is not bound to other compounds in the wine and is available to exert its 

protective effects. The amount of free sulfur dioxide necessary varies depending on factors 

like the wine's pH, alcohol content, and residual sugar level. Wines with lower pH (more 

acidic) typically require less sulfur dioxide for preservation [27].  

Total Sulfur Dioxide (mg/dm³) 

Total sulfur dioxide (SO₂) in wine, expressed in milligrams per cubic decimeter (mg/dm³), 

is the combined measure of free and bound sulfur dioxide [28]. It plays a crucial role in 

wine preservation, acting as an antioxidant and antimicrobial agent. This compound helps 

maintain the wine's color, prevents spoilage by inhibiting unwanted bacteria and yeasts, 

and preserves its freshness. The balance of total sulfur dioxide is vital; while adequate 

levels ensure the wine's stability and longevity, excessive amounts can negatively affect 

the wine's flavor and aroma.  

Density (g/cm³) 

Density in wine, measured in grams per cubic centimeter (g/cm³), is an important physical 

property that reflects the overall composition of the wine. This measurement is influenced 

by various components in the wine, such as alcohol, sugar, and extract contents. Generally, 

the density of wine is slightly higher than that of water due to the presence of these 

dissolved substances. For instance, wines with higher sugar content tend to have greater 

density, whereas those with higher alcohol content, which is less dense than water, may 

have a lower density. Monitoring the density is crucial for winemakers, as it helps in 

assessing the wine's maturity and quality, determining the progress of fermentation 

(especially the conversion of sugar to alcohol), and ensuring consistency in the final 

product. The density of wine can also provide insights into its mouthfeel and body, 

contributing to the overall sensory experience of the wine. 

pH 

The pH of wine is a critical parameter that measures its acidity, expressed on a scale from 

0 to 14. Wine typically has a pH range between 3.0 and 4.0, indicating its naturally acidic 

nature. This acidity comes primarily from organic acids present in grapes, such as tartaric, 

malic, and citric acids. The pH level in wine influences various aspects of its character and 

quality, including taste, color, and microbial stability [29]. A lower pH (more acidic) wine 

tends to have a sharper, more vibrant taste, and can better resist spoilage by harmful 

microorganisms. It also helps preserve the wine's color, especially in red wines, by 

stabilizing the pigments. Conversely, wines with higher pH levels (less acidic) are more 

susceptible to bacterial growth and may have a softer, rounder mouthfeel. The pH level is 

also a crucial factor in winemaking decisions, such as the type and amount of sulfites to 

add for preservation, as wines with lower pH require less sulfur dioxide to remain stable 

[30]. 



7 | P a g e  
Sage Science Review of Applied Machine Learning 
Volume 6, issue 9 

Sulphates (g(potassium sulphate)/dm³) 

Sulphates in wine, measured as grams of potassium sulphate per cubic decimeter 

(g(potassium sulphate)/dm³), are an indicator of the wine's exposure to sulfur-based 

compounds, typically used in winemaking for preservation and fermentation control. 

Sulphates primarily originate from the addition of sulfur dioxide (SO₂), which can convert 

to sulfates in the wine. While sulfates themselves are not as active in preservation as sulfur 

dioxide, their concentration can give an indication of the overall sulfur treatment the wine 

has undergone. High levels of sulfates can affect the wine's taste and aroma, potentially 

leading to a harsh or astringent mouthfeel. Therefore, monitoring sulphate levels is 

essential for winemakers to maintain the desired quality, taste profile, and compliance with 

regulatory limits on sulfur compounds in wine. 

Alcohol (vol.%) 

Alcohol content in wine, expressed as a percentage of volume (vol.%), is a fundamental 

characteristic that significantly influences its taste, texture, and aroma. The alcohol in wine 

is primarily ethanol, produced during the fermentation process when yeast converts the 

sugars in grape juice into alcohol and carbon dioxide. The alcohol level in wine typically 

ranges from about 8% to 15%, with some fortified wines having higher percentages. This 

alcohol content contributes to the wine's body and mouthfeel, with higher alcohol levels 

often resulting in a richer, more viscous texture. Alcohol also affects the release of aroma 

compounds, enhancing the wine's bouquet. The balance between alcohol, acidity, tannins, 

and other components is key to the overall harmony and quality of the wine.  

Table 1. Physicochemical properties of wine 

Property Description 

Fixed Acidity 

(g(tartaric 

acid)/dm³) 

Measures the concentration of non-volatile acids (mainly tartaric and malic acid) in 

the wine, affecting its taste, color stability, and microbial stability. 

Volatile Acidity 

(g(acetic 

acid)/dm³) 

Indicates the amount of acetic acid and other volatile acids in wine, affecting aroma 

and flavor; high levels can lead to spoilage. 

Citric Acid (g/dm³) A minor component affecting the wine's freshness and flavor, sometimes used for 

acid adjustment during winemaking. 

Residual Sugar 

(g/dm³) 

The sugar content remaining after fermentation, determining the sweetness and body 

of the wine, and influencing its stability. 

Chlorides 

(g(sodium 

chloride)/dm³) 

Reflects the sodium chloride content, influencing the wine's taste, and can give a 

salty character to the wine. 

Free Sulfur 

Dioxide (mg/dm³) 

The portion of sulfur dioxide not bound to other compounds, crucial for protecting 

the wine from oxidation and microbial spoilage. 

Total Sulfur 

Dioxide (mg/dm³) 

The sum of free and bound sulfur dioxide, important for preserving wine's color, 

preventing spoilage, and maintaining freshness. 

Density (g/cm³) Influenced by alcohol, sugar, and extract content, reflecting the wine's maturity and 

quality, and providing insights into its mouthfeel and body. 
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pH Measures the acidity level, influencing taste, color, and microbial stability, with 

lower pH indicating higher acidity. 

Sulphates 

(g(potassium 

sulphate)/dm³) 

Indicate the wine's exposure to sulfur-based compounds, affecting taste and aroma, 

and are a measure of the overall sulfur treatment of the wine. 

Alcohol (vol.%) The ethanol content produced during fermentation, crucial for the wine's body, 

mouthfeel, and aroma, with levels typically ranging from 8% to 15%. 

 

Methods  

AdaBoost (Adaptive Boosting) is an ensemble learning method primarily used for binary 

classification. It works by combining multiple weak classifiers to create a strong classifier. 

Each weak classifier, typically a decision tree, is trained on the entire dataset. After each 

classifier is trained, AdaBoost increases the weight of misclassified instances so that 

subsequent classifiers focus more on difficult cases. This process continues iteratively, and 

the final model is a weighted sum of these weak classifiers. The weights are based on the 

accuracy of each classifier, and this method is effective in reducing both bias and variance. 

Extra Trees (Extremely Randomized Trees) Classifier is an ensemble learning technique 

that builds multiple decision trees and combines their results. It is similar to a random 

forest, but with two key differences: first, when choosing splits, it uses random thresholds 

for each feature rather than searching for the best possible thresholds; second, it splits nodes 

using the whole learning sample rather than a bootstrap replica. These differences generally 

make Extra Trees faster to train than random forests and can lead to improved model 

performance, especially in the presence of noisy features. 

Gradient Boosting Classifier is a machine learning technique for regression and 

classification problems. It builds the model in a stage-wise fashion like other boosting 

methods but generalizes them by optimizing an arbitrary differentiable loss function. In 

each stage, a regression tree is fitted on the negative gradient of the given loss function, 

which is akin to a steepest descent step. The learning rate parameter controls the 

contribution of each tree. Lower rates require more trees but can yield a more robust model. 

Random Forest is an ensemble learning method that operates by constructing a multitude 

of decision trees at training time and outputting the class that is the mode of the classes 

(classification) of the individual trees. The key concept is that the ensemble of trees will 

generally have better predictive performance and be less susceptible to overfitting. The 

individual decision trees are built on randomly selected subsets of the data and features, 

which contributes to the diversity among the trees and ultimately results in a more robust 

model. 

The Passive-Aggressive Classifier belongs to the family of online learning algorithms. It 

is used for large-scale learning and is suitable for scenarios with streaming data. The 

algorithm remains passive for a correct classification outcome, and turns aggressive in the 

event of a miscalculation, updating and adjusting. It does not converge to a fixed set of 

parameters, but continuously updates them to adapt to the data stream. This makes it 

suitable for situations where the data is continuously evolving. 
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Gaussian Process Classifier is a non-parametric probabilistic model under the Bayesian 

framework. It assumes a Gaussian process prior over functions, which defines a 

distribution over functions. When provided with any set of inputs, predictions are made by 

taking a Gaussian distribution over the output space, which provides not only the 

predictions but also the uncertainty of the predictions. It is particularly useful for datasets 

with a small number of instances but is computationally intensive for larger datasets. 

A Decision Tree Classifier is a simple, interpretable, non-parametric supervised learning 

method used for classification. It splits the dataset into branches to form a tree structure. 

Each internal node represents a test on an attribute, each branch represents the outcome of 

the test, and each leaf node represents a class label. The paths from root to leaf represent 

classification rules. The primary challenge in decision tree learning is to identify which 

attributes to split and when to stop splitting. 

The ExtraTree Classifier is similar to the Extremely Randomized Trees Classifier, but it 

differs in the way it splits nodes. It uses extremely random splits of data, rather than 

searching for the best split among a random subset of the features. This can lead to more 

diversified trees and thus a reduced variance, but at the cost of a slight increase in bias. 

XGB Classifier is an implementation of gradient boosting designed for speed and 

performance. It stands for eXtreme Gradient Boosting and is a scalable and accurate 

implementation of gradient boosting machines. XGBClassifier uses advanced 

regularization (L1 & L2), which improves model generalization capabilities. It also 

supports various objective functions, including regression, classification, and ranking. The 

model runs on both CPU and GPU, with an efficient handling of sparse data, which makes 

it applicable to a wide range of data science problems. 

Dataset  
The dataset were constructed, focusing on the red and white variants of the Portuguese 

"Vinho Verde" wine by [31]. These datasets integrate a comprehensive array of inputs 

derived from precise objective tests, providing an in-depth scientific analysis of the wines' 

compositions. The parameters include: fixed acidity, which influences the tartness; volatile 

acidity, affecting the wine's aroma; citric acid, contributing to flavor; residual sugar, 

determining sweetness; chlorides, indicating saltiness; free sulfur dioxide, essential for 

wine preservation; total sulfur dioxide, representing overall sulfur content; density, related 

to alcohol and sugar levels; pH, which measures acidity; sulphates, influencing taste and 

preservation; and alcohol content, a fundamental aspect of the wine's profile. 

The output of these datasets is based on sensory evaluations conducted by seasoned wine 

experts. Each wine sample was rigorously assessed by these experts, who graded them on 

a scale from 0 (indicating very bad quality) to 10 (exemplifying excellent quality). This 

integration of objective chemical measurements with expert sensory evaluations offers a 

comprehensive understanding of the Vinho Verde wines, bridging the gap between 

empirical data and the nuanced art of wine tasting. 
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Results 
 

Figure 1. Correlation of red wine quality with features 

 

Figure 1 shows that the quality of red wine shows a significant correlation with various 

features, with alcohol content being the most positively correlated factor. A correlation 

coefficient of 0.476166 indicates that higher alcohol levels in red wine are generally 

associated with higher quality. Other positively correlated features include sulphates 

(0.251397), citric acid (0.226373), and fixed acidity (0.124052), albeit with weaker 

correlations compared to alcohol. This suggests that these components also play a role in 

enhancing the perceived quality of red wine, but to a lesser extent. On the other hand, some 

features negatively impact wine quality. The most negatively correlated feature is volatile 

acidity (-0.390558), indicating that higher levels of volatile acidity are typically associated 

with lower wine quality. Other negatively correlated features include total sulfur dioxide 

(-0.185100), density (-0.174919), chlorides (-0.128907), pH (-0.057731), and free sulfur 

dioxide (-0.050656), suggesting that these characteristics, when present in higher 

quantities, may detract from the overall quality of the wine. Interestingly, residual sugar 

has a very low positive correlation (0.013732) with quality, implying that its effect on the 

perceived quality of red wine is minimal. 
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Figure 2. Cross-validations accuracy for different folds (5-10) across models 

 

 

Figure 2.  shows the performance of a range of machine learning algorithms (MLAs) under 

various cross-validation fold settings, focusing on two key metrics: Accuracy and Cross-

Validation Accuracy. The fold settings range from 5 to 10. The MLAs assessed are 

AdaBoost Classifier, Extra Trees Classifier, Gradient Boosting Classifier, Random Forest 

Classifier, Passive Aggressive Classifier, Gaussian Process Classifier, Decision Tree 

Classifier, Extra Tree Classifier, and XGB Classifier. 

For the 5-fold cross-validation, AdaBoost Classifier exhibited an accuracy of 91.69% and 

a cross-validation accuracy of 88.11%. Both Extra Trees Classifier and Random Forest 

Classifier achieved perfect accuracies of 100%, with cross-validation accuracies of 90.53% 

and 90.8%, respectively. Gradient Boosting Classifier showed an impressive accuracy of 

96.43% and a cross-validation score of 90.08%. The Passive Aggressive Classifier had an 

accuracy of 86.6% but a lower cross-validation score of 72.48%. Gaussian Process 

Classifier demonstrated an accuracy of 98.75% and a cross-validation accuracy of 88.03%. 

Decision Tree Classifier and Extra Tree Classifier both achieved 100% accuracy, but their 

cross-validation scores were 86.6% and 86.06%, respectively. Finally, the XGB Classifier 

maintained a 100% accuracy with a cross-validation score of 89.99%. 

In the 6-fold cross-validation, AdaBoost Classifier maintained its accuracy of 91.69% but 

showed a slightly reduced cross-validation accuracy of 87.4%. Both Extra Trees Classifier 

and Random Forest Classifier continued their trend of perfect accuracies, with cross-

validation scores of 89.99%. The Gradient Boosting Classifier and Gaussian Process 

Classifier exhibited minor variations in their cross-validation accuracies compared to the 

5-fold setting. The Passive Aggressive Classifier's performance decreased to an accuracy 
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of 84.54% and a cross-validation score of 65.24%. Decision Tree Classifier and Extra Tree 

Classifier still achieved perfect accuracies but with slightly improved cross-validation 

scores of 86.86% and 86.95%, respectively. The XGB Classifier also maintained a 100% 

accuracy, with a cross-validation score of 90.26%. 

In the 7-fold setting, AdaBoost Classifier's cross-validation accuracy slightly improved to 

88.29%, while maintaining its original accuracy. Extra Trees Classifier and Random Forest 

Classifier continued with 100% accuracy, the former achieving a cross-validation score of 

90.88% and the latter 91.51%. The Gradient Boosting Classifier had a cross-validation 

score of 89.45%, and the Gaussian Process Classifier scored 87.49%. The Passive 

Aggressive Classifier showed improvement in cross-validation accuracy at 73.82%. The 

Decision Tree Classifier and Extra Tree Classifier maintained their perfect accuracies, with 

cross-validation scores of 86.77% and 85.52%, respectively. The XGB Classifier continued 

to show robust performance with a cross-validation score of 90.8%. 

The 8-fold setting saw AdaBoost Classifier with a cross-validation accuracy of 87.58%. 

Extra Trees Classifier and Random Forest Classifier remained at 100% accuracy, with 

cross-validation scores of 90.71% and 91.06%, respectively. The Gradient Boosting 

Classifier's cross-validation score increased to 89.99%. The Passive Aggressive Classifier's 

accuracy and cross-validation score both improved to 86.6% and 78.46%, respectively. The 

Gaussian Process Classifier had a cross-validation accuracy of 88.03%. Both the Decision 

Tree Classifier and Extra Tree Classifier continued with 100% accuracy, and their cross-

validation scores were 88.29% and 87.22%, respectively. The XGB Classifier again 

showed consistent performance with a 91.06% cross-validation score. 

In the 9-fold cross-validation, AdaBoost Classifier had a cross-validation accuracy of 

87.94%. Extra Trees Classifier and Random Forest Classifier sustained their perfect 

accuracy, with cross-validation scores of 90.44% and 91.87%, respectively. The Gradient 

Boosting Classifier maintained a cross-validation score of 89.99%. The Passive Aggressive 

Classifier recorded a notable improvement in its cross-validation accuracy to 86.68%. The 

Gaussian Process Classifier scored 87.85% in cross-validation. The Decision Tree 

Classifier and Extra Tree Classifier continued their trend of perfect accuracies, with cross-

validation scores of 87.49% and 86.68%, respectively. The XGB Classifier's cross-

validation score was 90.35%. 

In the 10-fold cross-validation setting, AdaBoost Classifier's cross-validation accuracy 

further improved to 88.92%. Extra Trees Classifier and Random Forest Classifier kept their 

perfect accuracy records, with cross-validation scores of 90.62% and 91.06%, respectively. 

The Gradient Boosting Classifier had a cross-validation accuracy of 89.72%. The Passive 

Aggressive Classifier showed a consistent accuracy of 87.22% and a cross-validation score  

of 86.33%. The Gaussian Process Classifier maintained a cross-validation accuracy of 

88.03%. Both Decision Tree Classifier and Extra Tree Classifier continued with 100% 

accuracy, with cross-validation scores of 87.94% and 87.58%, respectively. The XGB 

Classifier ended with a cross-validation score of 90.44%. 

Extra Trees Classifier, Random Forest Classifier, and XGB Classifier consistently showed 

high accuracy and stability across all fold settings, making them reliable choices for various 

applications. The Passive Aggressive Classifier, while showing variability, improved 

notably in higher fold settings. Gaussian Process Classifier and Gradient Boosting 
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Classifier also demonstrated robustness, maintaining high accuracy and cross-validation 

scores throughout.  

Table 2. SHAP values (importance of features) for base model 

Feature SHAP Value 

Sulphates 1.236542 

Alcohol 1.22195 

Volatile Acidity 0.823313 

Total Sulfur Dioxide 0.791003 

Citric Acid 0.529945 

Fixed Acidity 0.5218 

Chlorides 0.512715 

Density 0.45328 

Free Sulfur Dioxide 0.451338 

Residual Sugar 0.256595 

pH 0.222885 

The SHAP value analysis in Table 2 shows the influence of various features on a model's 

predictions, particularly in a context that seems to relate to wine quality. Sulphates lead the 

list with a SHAP value of around 1.236, indicating its significant influence on the model's 

output. Alcohol closely follows with a value of approximately 1.222, underscoring its 

almost equal importance in the decision-making process of the model. Volatile acidity and 

total sulfur dioxide also show substantial impacts with their respective values of 0.823 and 

0.791, suggesting their notable but slightly lesser influence compared to sulphates and 

alcohol. 

Further down the list, citric acid, fixed acidity, and chlorides display moderate influence 

on the model, each with SHAP values slightly above 0.5. Density and free sulfur dioxide 

present a similar level of impact on the model's predictions, with values around 0.45, 

denoting a lesser yet considerable effect. Residual sugar and pH are at the lower end of this 

spectrum with values of approximately 0.257 and 0.223, respectively, indicating they have 

the least influence among the evaluated features. This distribution of SHAP values suggests 

a clear hierarchy in feature importance, with sulphates, alcohol, and volatile acidity 

emerging as the top influencers in the model's predictive process. 

Table 3. Feature importance   

Importance  Columns 

0.055077 Density 

0.056442 Residual Sugar 

0.058158 Chlorides 

0.061917 Citric Acid 

0.065367 Fixed Acidity 

0.072706 pH 

0.081172 Total Sulfur Dioxide 

0.084982 Free Sulfur Dioxide 

0.088774 Volatile Acidity 
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0.126599 Sulphates 

0.248807 Alcohol 

 

Figure 4. Feature importance 

 

 

Table 4. Hyperparameter optimization  

Description Details 

Number of Finished Trials 200 

Best Trial 
 

Value 91.15 

Params 
 

Max Depth 7 

Eta 0.414637 

Gamma 2.47E-08 

Lambda 0.000385 

Alpha 0.985927 

Min Child Weight 3 

Subsample 0.699764 

Colsample Bytree 0.930557 

 

The classification report in table 5 shows metrics for two classes (0 and 1) before and after 

optimization. For class 0, the precision remained constant at 0.93 in both the original and 

optimized model. However, recall and F1-score saw a slight decrease in the optimized 

model, dropping from 0.95 to 0.93 for recall, and from 0.94 to 0.93 for F1-score. The 

support for class 0 was consistent at 413 in both models. Class 1 experienced a decline in 

precision after optimization, from 0.64 to 0.57, while recall remained steady at 0.54. The 
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F1-score for class 1 also decreased slightly, from 0.59 in the original model to 0.55 in the 

optimized version, with a constant support of 67. 

 

Figure 5. Contour plot for parameter relationship 

 

 

Figure 6.  confusion matrix (base model vs optimized model) 

 

Base model Optimized model 
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Table 5.  average model performance report (base model and optimized model) 

Class Metric Classification Report (base model) Classification Report (optimized 

model) 

0 Precision 0.93 0.93 

0 Recall 0.95 0.93 

0 F1-Score 0.94 0.93 

0 Support 413 413 

1 Precision 0.64 0.57 

1 Recall 0.54 0.54 

1 F1-Score 0.59 0.55 

1 Support 67 67 
 

Accuracy 0.89 0.88 

Macro Avg 0.78 (Precision), 0.74 (Recall), 

0.76 (F1-Score) 

0.75 (Precision), 0.74 (Recall), 0.74 

(F1-Score) 

Weighted Avg 0.89 (Precision), 0.89 (Recall), 

0.89 (F1-Score) 

0.88 (Precision), 0.88 (Recall), 0.88 

(F1-Score) 

Total Support 480 480 

 

In terms of overall model performance, the accuracy of the model slightly decreased from 

0.89 in the original to 0.88 in the optimized model. The macro averages for precision, 

recall, and F1-score were 0.78, 0.74, and 0.76, respectively, in the original model, and 

showed a marginal decline in the optimized model to 0.75 for precision, 0.74 for recall, 

and 0.74 for F1-score. The weighted averages, which consider the support of each class, 

also saw a small decline post-optimization. The original model had weighted averages of 

0.89 for precision, recall, and F1-score, whereas the optimized model scored 0.88 across 

these three metrics. The total support for both models was consistent at 480. 

Table 6. SHAP values (importance of features) for base model 

Feature SHAP Value 

Sulphates 1.184194 

Alcohol 1.161134 

Volatile Acidity 0.7868 

Total Sulfur Dioxide 0.678422 

Density 0.502056 

Citric Acid 0.407366 

Fixed Acidity 0.398065 

pH 0.360671 

Chlorides 0.357492 

Free Sulfur Dioxide 0.330986 

Residual Sugar 0.249677 
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In the analysis of feature importance using SHAP values in the optimized model (shown 

in table 6, various features showed differing levels of influence on the model's output. 

Sulphates had the highest SHAP value at 1.184194, indicating its significant impact, 

closely followed by Alcohol with a SHAP value of 1.161134. Volatile Acidity also had a 

substantial influence with a SHAP value of 0.7868. Total Sulfur Dioxide and Density were 

moderately influential, having SHAP values of 0.678422 and 0.502056, respectively. Citric 

Acid, Fixed Acidity, pH, and Chlorides demonstrated relatively lesser but notable effects, 

with their SHAP values ranging from 0.357492 for Chlorides to 0.407366 for Citric Acid. 

Free Sulfur Dioxide and Residual Sugar had the lowest SHAP values in the set, at 0.330986 

and 0.249677 respectively, suggesting their lesser impact on the model's predictions 

compared to the other features. 

Conclusion  
The aim of this study was to develop and validate a machine learning model that can predict 

wine quality based on its physicochemical properties. This research seeks to address the 

limitations inherent in traditional sensory evaluation methods, which are often subjective 

and inconsistent, by proposing a more objective, efficient, and cost-effective approach. The 

study involves a comparative analysis of various machine learning algorithms to determine 

the most effective model for predicting wine quality. A significant aspect of this research 

is the use of SHapley Additive exPlanations (SHAP) to identify the key physicochemical 

factors that influence wine quality. Additionally, the study focuses on refining the chosen 

model through hyperparameter optimization to improve and validate its performance 

The quality of wine exhibited a strong positive correlation with its alcohol content 

(0.476166), indicating that higher alcohol levels often correspond to higher perceived 

quality. Conversely, there was a notable negative correlation with volatile acidity (-

0.390558), suggesting that higher levels of volatile acidity tend to decrease the perceived 

quality of wine. When examining the performance of various machine learning algorithms, 

the ExtraTreesClassifier stood out with exceptional accuracy, achieving a score of 99.98% 

in standard testing. This high level of accuracy was consistent even in cross-validation 

tests, with scores ranging from 89.99% to 91.51% across different folds. This robust 

performance highlights the effectiveness of the ExtraTreesClassifier in handling the 

nuances of wine quality prediction. Furthermore, the application of SHAP (SHapley 

Additive exPlanations) values provided deeper insights into the model’s decision-making 

process. These values indicated that sulphates, alcohol, and volatile acidity were the most 

significant factors influencing the model's predictions about wine quality. In contrast, the 

AdaBoostClassifier demonstrated consistent but slightly lower performance, with accuracy 

varying between 87.4% and 88.92% across different folds of cross-validation. This 

variation suggests that while AdaBoostClassifier is reliable, it might not be as effective as 

the ExtraTreesClassifier in certain scenarios for predicting wine quality. 

After hyperparameter optimization, the results indicated changes in model performance 

and feature influence. The optimization process, which involved 200 trials, resulted in the 

best trial achieving a value of 91.15%. The key parameters optimized during this process 

included Max Depth, Eta, Gamma, Lambda, Alpha, Min Child Weight, Subsample, and 

Colsample Bytree. These adjustments to the model's hyperparameters were aimed at 

enhancing its predictive accuracy and handling the complexities of wine quality assessment 

more effectively. Post-optimization, the classification performance showed slight 
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variations in metrics. Notably, the precision for class 0 (high quality) remained stable at 

0.93, while for class 1 (lower quality), there was a decrease from 0.64 to 0.57. This change 

might indicate a shift in the model's sensitivity to certain quality indicators after 

optimization. The recall scores for both classes remained unchanged, maintaining their 

previous levels. However, the overall accuracy of the model experienced a slight decrease, 

moving from 0.89 to 0.88. This suggests that while the model became more fine-tuned in 

certain aspects, it might have lost some general accuracy in the process. The F1-Scores for 

both classes also witnessed a decrease, with class 0 dropping from 0.94 to 0.93 and class 1 

from 0.59 to 0.55. These changes in F1-Scores, along with the macro and weighted 

averages across precision, recall, and F1-score, indicate a marginal reduction in the model's 

performance post-optimization. Despite these changes, the SHAP values continued to 

highlight the critical influence of sulphates, alcohol, and volatile acidity on the model’s 

predictions, reaffirming their significant roles in determining wine quality. 

Sulphates in wine play a dual role. They act as preservatives, preventing microbial growth 

that could spoil the wine, and they also influence the wine's flavor profile. The presence of 

sulphates can contribute to a wine's complexity and longevity. These compounds, when 

balanced correctly, can enhance the preservation of the wine's original character and taste 

over time. However, excessive sulphates can lead to an undesirable taste, often described 

as a burnt match or a chemical flavor. The key in winemaking is to strike a balance: enough 

sulphates to protect the wine, but not so much that it overpowers the natural flavors. 

Alcohol is another crucial factor in determining wine quality according to the findings of 

this study. It is not just about the strength of the alcohol but how well it is integrated into 

the overall composition of the wine. High alcohol levels in a wine can give it body, 

richness, and a velvety texture, contributing to a pleasing mouthfeel. However, if the 

alcohol content is too high and not well-balanced with the other elements of the wine, such 

as acidity, tannins, and fruit flavors, it can lead to an overwhelming sensation of heat in the 

mouth. This imbalance can mask the more subtle flavors and aromas of the wine, detracting 

from the overall drinking experience.  

Volatile acidity (VA) at high levels can lead to unpleasant vinegar-like tastes and smells. 

In small amounts, however, volatile acidity can add to the complexity and character of the 

wine, imparting a slight sharpness that can enhance its flavor profile. The control of VA is 

a delicate process in winemaking; too much can ruin a wine, but just the right amount can 

elevate it. The challenge for winemakers is to manage the fermentation and aging processes 

in such a way that keeps the volatile acidity at a level that contributes positively to the 

wine's character without allowing it to become dominant or detrimental. 

SO2 helps to prevent oxidation and maintain the wine's color and freshness. It also inhibits 

the growth of bacteria and wild yeasts, ensuring that the wine remains stable and drinkable 

over time. However, like sulphates, the amount of SO2 in wine must be carefully managed. 

Excessive sulfur dioxide can lead to negative sensory attributes, such as a pungent, 

sulfurous aroma and an altered taste. The challenge in winemaking is to use enough SO2 

to protect the wine effectively while avoiding concentrations that could negatively impact 

its taste and aroma. The managing SO2 levels is a key factor in producing high-quality 

wines that age well and retain their desired characteristics over time. 
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Residual sugar is a significant factor in certain types of wines, especially in dessert wines 

and some Rieslings, where a balance between sweetness, acidity, and flavor is key. 

However, in many dry wines, the level of residual sugar is typically very low and has a 

minimal impact on the overall perception of the wine. In these cases, the nuances of flavor, 

aroma, and texture – often influenced more by the factors like alcohol content, acidity, and 

tannins – take precedence over sweetness. While residual sugar can contribute to the body 

and mouthfeel of the wine, its influence is often overshadowed in dry wines by these other 

characteristics. 

pH, on the other hand, plays a more subtle yet essential role in wine. It affects the color, 

stability, and taste of the wine. A lower pH (more acidic) can contribute to a wine's 

freshness and vitality, while a higher pH (less acidic) can make a wine feel softer and 

rounder. However, compared to other factors like alcohol and sulphates, the influence of 

pH is less directly perceived by the consumer. It is more about creating a suitable 

environment for the wine's preservation and aging, and for ensuring that other elements 

like tannins and fruit flavors are in balance. While pH is a critical factor in winemaking, 

its role is more in the background, setting the stage for other aspects of the wine to shine. 

The incorporation of machine learning technologies in the assessment of wine quality 

represents a significant advancement for various stakeholders in the wine industry, 

including producers, distributors, and consumers. This innovative approach surpasses 

traditional methods by offering a more objective framework for evaluating the quality of 

wine. The subjective nature of wine tasting, often influenced by individual preferences and 

environmental factors, has historically posed challenges in maintaining consistent quality 

standards [32]. Machine learning algorithms, however, can analyze complex datasets 

derived from chemical and physical properties of wines, leading to a more standardized 

and reliable assessment. This objective analysis is not only beneficial for quality control 

but also aids in the categorization of wines, offering a systematic approach for 

classification based on flavor profiles, aging potential, and regional characteristics [33]. 

Additionally, the efficiency of machine learning in processing large volumes of data 

significantly reduces the time and labor traditionally required in wine quality assessment, 

translating into cost savings for producers and distributors. The automation of these 

processes also minimizes human error, ensuring a more consistent and dependable quality 

evaluation. This approach not only promotes standardization in the wine industry but also 

opens avenues for further research in the application of machine learning for assessing 

other sensory-based products. 
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