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Abstract  
In the field of sports biomechanics, the analysis of dynamic motion patterns is crucial 
for understanding athletic performance, injury prevention, and rehabilitation strategies. 
However, capturing clean and accurate neural signals from athletes during high-
intensity activities can be challenging due to various sources of noise and interference. 
This research proposes a novel approach to neural signal denoising using a stacking 
ensemble of hybrid Convolutional Neural Networks (CNN) and Recurrent Neural 
Networks (RNN) for dynamic arrow characterization in sports biomechanics. The 
proposed method combines the strengths of both CNN and RNN architectures to capture 
spatial and temporal relationships within the noisy neural signals. The CNN component 
is responsible for extracting relevant features from the raw data, while the RNN 
component models the temporal dependencies within the denoised signals. By 
employing a stacking ensemble technique, the model leverages the outputs from 
multiple hybrid CNN-RNN models to enhance overall performance and robustness. The 
proposed approach is evaluated on a comprehensive dataset collected from athletes 
performing various sports-specific movements. The results demonstrate the 
effectiveness of the stacking ensemble method in accurately denoising neural signals 
and characterizing dynamic arrow patterns, outperforming traditional denoising 
techniques and single-model approaches. The findings of this research have significant 
implications for sports biomechanics, enabling researchers and practitioners to obtain 
more reliable and accurate neural data, leading to improved analysis, decision-making, 
and performance optimization. The proposed method can be extended to other domains 
where signal denoising and dynamic pattern characterization are critical, such as 
healthcare, robotics, and human-computer interaction. 

Keywords: Neural Signal Denoising, Sports Biomechanics, Hybrid CNN-RNN, Stacking 
Ensemble, Dynamic Arrow Characterization 

Introduction 
Sports biomechanics is a multidisciplinary field that focuses on the study of human 
movement and the application of mechanical principles to analyze and enhance athletic 
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performance. In recent years, the integration of neural signal analysis has gained 
significant attention, as it provides insights into the neural processes underlying 
movement control, coordination, and decision-making during athletic activities. Neural 
signals, such as electroencephalography (EEG) and electromyography (EMG), offer 
valuable information about the brain's activity and muscle activation patterns, 
respectively. However, capturing clean and accurate neural signals during high-
intensity sports activities is a challenging task due to various sources of noise and 
interference, including movement artifacts, electrical interference, and physiological 
noise.  

Traditional signal processing techniques, such as filtering and wavelet-based denoising, 
have been employed to address these challenges [1]. However, these methods often rely 
on predefined assumptions and have limited adaptability to the complexities of real-
world scenarios. In recent years, deep learning techniques, particularly Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), have demonstrated 
promising results in various signal processing tasks, including denoising, feature 
extraction, and pattern recognition. CNNs excel at capturing spatial relationships and 
extracting meaningful features from raw data, while RNNs are adept at modeling 
temporal dependencies within sequential data [2]. Hybrid CNN-RNN architectures 
have been successfully applied in various domains, including speech recognition, 
natural language processing, and time series analysis. However, their application in the 
field of sports biomechanics, specifically for neural signal denoising and dynamic 
pattern characterization, remains relatively unexplored [3]. 

In this research, we propose a novel approach to neural signal denoising in sports 
biomechanics using a stacking ensemble of hybrid CNN-RNN models for dynamic 
arrow characterization. The proposed method combines the strengths of both CNN and 
RNN architectures to capture spatial and temporal relationships within the noisy neural 
signals. By employing a stacking ensemble technique, the model leverages the outputs 
from multiple hybrid CNN-RNN models to enhance overall performance and 
robustness. The specific objectives of this research are: 

1. To develop a hybrid CNN-RNN architecture capable of effectively denoising neural 
signals obtained from athletes during high-intensity sports activities. 

2. To implement a stacking ensemble technique that combines multiple hybrid CNN-
RNN models to enhance the accuracy and robustness of dynamic arrow 
characterization. 

3. To evaluate the performance of the proposed method on a comprehensive dataset 
collected from athletes performing various sports-specific movements. 

The remainder of this article is structured as follows: Section 2 provides a review of 
relevant literature on neural signal denoising and deep learning techniques in sports 
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biomechanics. Section 3 outlines the methodology, including data collection, 
preprocessing, and the proposed stacking ensemble of hybrid CNN-RNN models. 
Section 4 presents the experimental results and analysis, comparing the proposed 
method with traditional techniques and single-model approaches. Section 5 discusses 
the implications and potential applications of the research findings. Finally, Section 6 
concludes the article and highlights future research directions. 

Literature Review: 
Neural Signal Denoising in Sports Biomechanics: The analysis of neural signals, such 
as EEG and EMG, has become increasingly important in sports biomechanics to 
understand the neural processes underlying movement control, coordination, and 
decision-making during athletic activities [4]. However, capturing clean and accurate 
neural signals during high-intensity sports activities is a challenging task due to various 
sources of noise and interference. Movement artifacts, electrical interference, and 
physiological noise can significantly distort the acquired neural signals, making it 
difficult to extract meaningful information. Researchers have employed various 
traditional signal processing techniques to address these challenges, including filtering 
and wavelet-based denoising. 

Filtering techniques, such as low-pass, high-pass, and band-pass filters, have been 
widely used to remove specific frequency components from the neural signals. 
However, these methods often rely on predefined assumptions about the frequency 
distribution of the signal and noise, which may not always hold true in complex real-
world scenarios [5]. Wavelet-based denoising methods, such as the Discrete Wavelet 
Transform (DWT) and the Wavelet Packet Transform (WPT), have also been applied 
to neural signal denoising. These techniques decompose the signal into different 
frequency bands and employ thresholding strategies to remove noise components. 
While wavelet-based methods provide more flexibility compared to traditional filtering, 
their performance is still limited by the choice of wavelet basis functions and the 
selection of appropriate thresholding parameters [6]. 

Deep Learning Techniques in Sports Biomechanics: Deep learning, particularly 
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), has 
gained significant attention in various signal processing tasks, including denoising, 
feature extraction, and pattern recognition. CNNs are particularly effective at capturing 
spatial relationships and extracting meaningful features from raw data, making them 
suitable for tasks such as image recognition, object detection, and signal denoising. In 
the context of sports biomechanics, CNNs have been applied to tasks such as posture 
analysis, movement recognition, and injury risk assessment [7]. 

RNNs, on the other hand, excel at modeling temporal dependencies within sequential 
data, making them well-suited for tasks such as speech recognition, natural language 
processing, and time series analysis. In sports biomechanics, RNNs have been utilized 
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for tasks such as action recognition, biomechanical pattern analysis, and athlete 
performance prediction. Hybrid CNN-RNN architectures, which combine the strengths 
of both CNNs and RNNs, have been successfully applied in various domains, including 
speech recognition, natural language processing, and time series analysis. However, 
their application in the field of sports biomechanics, specifically for neural signal 
denoising and dynamic pattern characterization, remains relatively unexplored [8]. 

Ensemble Learning Techniques: Ensemble learning techniques have been widely 
adopted in various machine learning tasks to enhance the overall performance and 
robustness of models. The basic concept behind ensemble learning is to combine 
multiple individual models, each trained on the same dataset but with different 
initializations, architectures, or training strategies. By leveraging the strengths and 
mitigating the weaknesses of individual models, ensemble methods can often achieve 
better predictive performance and generalization capabilities than single models [9]. 
Several ensemble learning techniques have been proposed and successfully applied in 
various domains, including: 

Bagging (Bootstrap Aggregating): Bagging involves training multiple models on 
different subsets of the training data, obtained through bootstrap sampling with 
replacement. The predictions from these individual models are then combined, typically 
through majority voting for classification tasks or by averaging for regression tasks. 

Boosting: Boosting is an iterative ensemble technique where weak models are trained 
sequentially, with each subsequent model focusing on the instances that were 
misclassified or poorly predicted by the previous models. The final prediction is 
obtained by combining the outputs of all individual models, with higher weights 
assigned to models that performed better on the training data. 

Stacking: Stacking, also known as stacked generalization, involves training multiple 
base models on the same dataset and using their predictions as input features for a meta-
learner [10]. The meta-learner is responsible for combining the outputs from the base 
models, learning to optimally weight their predictions and mitigate their individual 
weaknesses. 

Blending: Blending is a ensemble technique similar to stacking, where the outputs from 
multiple base models are combined using a weighted average or other combination 
strategies. Unlike stacking, blending does not employ a meta-learner but instead uses a 
predefined weighting scheme or heuristic to combine the predictions from the base 
models. Ensemble learning techniques have been successfully applied in various 
domains, including computer vision, natural language processing, time series analysis, 
and signal processing tasks. By leveraging the collective knowledge and diverse 
perspectives of multiple models, ensemble methods can often achieve superior 
performance compared to individual models, leading to more accurate and robust 
predictions [11]. 
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In the context of this research, the proposed method incorporates a stacking ensemble 
of hybrid CNN-RNN models to address the challenges of neural signal denoising and 
dynamic arrow characterization in sports biomechanics. The stacking ensemble 
approach allows the method to combine the outputs from multiple hybrid CNN-RNN 
models, each with different initializations and architectures, using a meta-learner to 
optimally weight their predictions and mitigate their individual weaknesses. This 
ensemble technique contributes to the superior performance of the proposed method, as 
demonstrated by the results presented in this research article. 

Methodology: 
Data Collection and Preprocessing: The dataset used in this research was collected 
from a group of 20 athletes (10 males and 10 females) aged between 18 and 25 years. 
The athletes were selected from various sports disciplines, including basketball, soccer, 
volleyball, and track and field events. All participants provided informed consent, and 
the study was approved by the institutional review board. Neural signals, specifically 
electroencephalography (EEG) and electromyography (EMG), were recorded using a 
wireless, multi-channel biosignal acquisition system. The EEG signals were acquired 
from 32 electrode locations following the international 10-20 system, while the EMG 
signals were collected from eight muscle groups (biceps brachii, triceps brachii, deltoid, 
trapezius, rectus femoris, biceps femoris, gastrocnemius, and tibialis anterior) 
bilaterally. The athletes performed a series of sports-specific movements, including 
sprinting, jumping, throwing, and sudden changes in direction. These movements were 
designed to simulate the dynamic nature of various sports activities and elicit a wide 
range of neural responses. The raw neural signals were preprocessed to remove artifacts 
and prepare the data for further analysis. The preprocessing steps included: 

Filtering: A band-pass filter with a frequency range of 0.5-50 Hz was applied to the 
EEG signals to remove low-frequency drift and high-frequency noise. A band-pass filter 
with a frequency range of 20-450 Hz was applied to the EMG signals to focus on the 
relevant muscle activation patterns. 

Artifact removal: Independent Component Analysis (ICA) was employed to identify 
and remove components associated with eye blinks, muscle artifacts, and environmental 
noise from the EEG signals. 

Normalization: The preprocessed EEG and EMG signals were normalized using the z-
score method to ensure consistent scaling across different channels and athletes. 

Segmentation: The continuous neural signals were segmented into overlapping 
windows of 500 milliseconds with a 50% overlap, creating a dataset of signal segments 
suitable for training and evaluation of the proposed models. 

Proposed Method: Stacking Ensemble of Hybrid CNN-RNN Models: The proposed 
method for neural signal denoising and dynamic arrow characterization in sports 
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biomechanics involves a stacking ensemble of hybrid CNN-RNN models. The 
ensemble approach leverages the outputs from multiple hybrid CNN-RNN models to 
enhance overall performance and robustness. The hybrid CNN-RNN architecture 
combines the strengths of CNNs for spatial feature extraction and RNNs for temporal 
dependency modeling. The CNN component processes the raw neural signals to extract 
relevant spatial features, while the RNN component captures the temporal relationships 
within the denoised signals. The proposed method consists of three main components: 

Hybrid CNN-RNN Models: 

   a. CNN Component: The CNN component consists of several convolutional layers 
followed by max-pooling layers. The convolutional layers extract spatial features from 
the raw neural signals, while the max-pooling layers downsample the feature maps to 
reduce dimensionality and introduce spatial invariance. 

   b. RNN Component: The RNN component employs a Long Short-Term Memory 
(LSTM) or Gated Recurrent Unit (GRU) architecture to model the temporal 
dependencies within the denoised signals from the CNN component. The RNN 
processes the feature maps from the CNN component, capturing the temporal 
relationships and producing a sequence of hidden state representations. 

   c. Fully Connected Layers: The hidden state representations from the RNN 
component are passed through one or more fully connected layers to produce the final 
denoised signal output. 

Stacking Ensemble: The stacking ensemble technique combines the outputs from 
multiple hybrid CNN-RNN models to improve performance and robustness. The 
ensemble consists of several independent hybrid CNN-RNN models, each trained on 
the same dataset but with different initializations and architectures. During inference, 
the outputs from these individual models are combined using a meta-learner, which can 
be another neural network or a simple averaging technique. The meta-learner learns to 
optimally combine the predictions from the individual models, leveraging their 
strengths and mitigating their weaknesses. 

Dynamic Arrow Characterization: The denoised neural signals obtained from the 
stacking ensemble are used to characterize dynamic arrow patterns in sports 
biomechanics. Arrow patterns refer to the temporal trends and trajectories of neural 
activity associated with specific movements or actions. Dynamic Time Warping (DTW)  
is applied to compare the denoised neural signals with a set of predefined templates or 
reference patterns. These templates can be derived from expert knowledge, previous 
studies, or through unsupervised learning techniques. The DTW algorithm computes 
the optimal alignment between the denoised signals and the reference patterns, allowing 
for non-linear temporal scaling. The resulting alignment scores provide insights into the 
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similarity of the observed neural activity to the predefined templates, enabling the 
characterization of dynamic arrow patterns associated with specific sports movements. 

Model Training and Evaluation: The hybrid CNN-RNN models were trained using a 
combination of supervised and unsupervised learning techniques. The supervised 
learning component involved training the models to predict the clean neural signals 
from the noisy input data. The clean signals were obtained by manually removing noise 
components from a subset of the collected data, serving as ground truth labels. 

The unsupervised learning component involved pretraining the CNN and RNN 
components using denoising autoencoders and sequence-to-sequence models , 
respectively. This pretraining step aimed to learn useful feature representations and 
temporal dynamics from the raw data, facilitating better initialization and faster 
convergence during the supervised training phase. The models were trained using the 
Adam optimizer with a learning rate scheduler to adjust the learning rate dynamically 
during training. Early stopping and dropout regularization techniques were employed 
to prevent overfitting and enhance the generalization ability of the models. 

The performance of the proposed method was evaluated using several metrics, 
including the Signal-to-Noise Ratio (SNR), Root Mean Squared Error (RMSE), and 
Pearson's Correlation Coefficient (PCC) between the denoised signals and the ground 
truth clean signals. Additionally, the dynamic arrow characterization accuracy was 
assessed by comparing the DTW alignment scores with expert-labeled patterns for 
various sports movements. The proposed method was compared with traditional 
denoising techniques, such as wavelet-based denoising and filtering methods, as well 
as single-model approaches using only CNN or RNN architectures. The statistical 
significance of the performance differences was evaluated using appropriate statistical 
tests, such as t-tests or ANOVA, depending on the nature of the data and the specific 
comparisons being made. 

Results and Analysis: The evaluation of the proposed stacking ensemble of hybrid 
CNN-RNN models for neural signal denoising and dynamic arrow characterization in 
sports biomechanics reveals significant improvements over traditional denoising 
techniques and single-model approaches. Through rigorous experimentation, the 
effectiveness of the ensemble method is demonstrated across a range of evaluation 
metrics, including signal-to-noise ratio (SNR), mean squared error (MSE), and 
classification accuracy. Comparative analyses highlight the superior performance of the 
proposed approach in effectively denoising neural signals and accurately characterizing 
dynamic arrows in sports biomechanics applications. These findings underscore the 
potential of leveraging ensemble techniques combining convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) to address complex signal processing 
tasks with enhanced efficacy and precision [12]. 
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Signal-to-Noise Ratio (SNR): The Signal-to-Noise Ratio (SNR) is a commonly used 
metric to evaluate the effectiveness of denoising methods. It measures the ratio of the 
power of the clean signal to the power of the noise in the denoised signal. A higher SNR 
value indicates better denoising performance [13]. 

Table 1 presents the SNR values for the proposed method, traditional techniques, and 
single-model approaches for both EEG and EMG signals. The proposed stacking 
ensemble of hybrid CNN-RNN models achieved the highest SNR values, 
outperforming all other methods across both signal types. 

Table 1: Signal-to-Noise Ratio (SNR) results for EEG and EMG signals 
Method EEG SNR (dB) EMG SNR (dB) 
Proposed Stacking Ensemble 24.5 ± 2.1 22.7 ± 1.8 
Traditional Wavelet Denoising 19.8 ± 2.4 18.3 ± 2.1 
Traditional Filtering 17.6 ± 2.7 16.5 ± 2.3 
Single CNN Model 21.3 ± 2.2 20.1 ± 2.0 
Single RNN Model 20.9 ± 2.3 19.7 ± 1.9 

 

 

Root Mean Squared Error (RMSE): The Root Mean Squared Error (RMSE) is another 
widely used metric that measures the average magnitude of the difference between the 
denoised signals and the ground truth clean signals. A lower RMSE value indicates 
better denoising performance [14]. Table 2 shows the RMSE values for the proposed 
method, traditional techniques, and single-model approaches for both EEG and EMG 
signals. The proposed stacking ensemble of hybrid CNN-RNN models achieved the 
lowest RMSE values, indicating its superiority in accurately reconstructing clean neural 
signals from noisy input data. 

Table 2: Root Mean Squared Error (RMSE) results for EEG and EMG signals 
Method EEG RMSE EMG RMSE 
Proposed Stacking Ensemble 0.072 ± 0.005 0.081 ± 0.006 

Traditional Wavelet Denoising 0.092 ± 0.007 0.104 ± 0.008 
Traditional Filtering 0.098 ± 0.008 0.112 ± 0.009 

Single CNN Model 0.082 ± 0.006 0.091 ± 0.007 
Single RNN Model 0.084 ± 0.007 0.094 ± 0.008 

 

Pearson's Correlation Coefficient (PCC): In addition to measuring the linear 
correlation between the denoised signals and the ground truth clean signals, Pearson's 
Correlation Coefficient (PCC) serves as a quantitative indicator of denoising 
performance. A PCC value closer to 1 signifies a stronger positive correlation, 
indicating more effective denoising. Table 3 offers a comparative analysis of PCC 
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values across the proposed method, traditional techniques, and single-model 
approaches, specifically focusing on EEG and EMG signals. These numerical results 
provide valuable insights into the efficacy of the proposed method in enhancing signal 
quality and mitigating noise interference, thereby facilitating informed decision-making 
in signal processing applications [15]. 

Dynamic Arrow Characterization Accuracy: In addition to the denoising performance 
metrics, the proposed method's ability to accurately characterize dynamic arrow 
patterns in sports biomechanics was evaluated. The accuracy of dynamic arrow 
characterization was assessed by comparing the DTW alignment scores of the denoised 
signals with expert-labeled patterns for various sports movements. Figure 1 shows the 
dynamic arrow characterization accuracy for different sports movements, including 
sprinting, jumping, throwing, and sudden changes in direction [16]. The proposed 
stacking ensemble of hybrid CNN-RNN models outperformed traditional techniques 
and single-model approaches, achieving higher accuracy in correctly identifying the 
predefined movement patterns. 

Table 3: Pearson's Correlation Coefficient (PCC) results for EEG and EMG signals 
Method EEG PCC EMG PCC 
Proposed Stacking Ensemble 0.93 ± 0.02 0.91 ± 0.03 
Traditional Wavelet Denoising 0.87 ± 0.03 0.85 ± 0.04 
Traditional Filtering 0.84 ± 0.04 0.82 ± 0.05 

Single CNN Model 0.89 ± 0.03 0.88 ± 0.03 
Single RNN Model 0.88 ± 0.03 0.87 ± 0.04 

 

Statistical Significance: To assess the statistical significance of the performance 
differences between the proposed method and the baseline techniques, appropriate 
statistical tests were conducted. For the SNR, RMSE, and PCC metrics, one-way 
ANOVA tests were performed, followed by post-hoc pairwise comparisons using 
Tukey's Honest Significant Difference (HSD) test. The results showed that the proposed 
stacking ensemble of hybrid CNN-RNN models outperformed traditional techniques 
and single-model approaches with statistically significant differences (p < 0.05) across 
all metrics and for both EEG and EMG signals. For the dynamic arrow characterization 
accuracy, chi-square tests were performed to compare the proposed method with the 
baseline techniques for each sports movement. The results indicated statistically 
significant differences (p < 0.05) between the proposed method and the baseline 
techniques for all sports movements, further highlighting the effectiveness of the 
proposed approach. 
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Discussion: 
The results presented in the previous section demonstrate the effectiveness of the 
proposed stacking ensemble of hybrid CNN-RNN models for neural signal denoising 
and dynamic arrow characterization in sports biomechanics. The proposed method 
outperformed traditional denoising techniques and single-model approaches across 
various evaluation metrics, including SNR, RMSE, PCC, and dynamic arrow 
characterization accuracy. The superior performance of the proposed method can be 
attributed to several factors: 

Hybrid CNN-RNN Architecture: The combination of CNNs and RNNs in a hybrid 
architecture allows the model to capture both spatial and temporal relationships within 
the noisy neural signals. The CNN component effectively extracts relevant features 
from the raw data, while the RNN component models the temporal dependencies within 
the denoised signals, leading to improved denoising and pattern recognition capabilities 
[17]. 

Stacking Ensemble Technique: The stacking ensemble approach leverages the outputs 
from multiple hybrid CNN-RNN models, each with different initializations and 
architectures. By combining the predictions from these individual models using a meta-
learner, the ensemble method enhances overall performance and robustness. The 
ensemble effectively mitigates the weaknesses of individual models and leverages their 
collective strengths, resulting in superior denoising and dynamic arrow 
characterization. 
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Pretraining and Regularization: The use of unsupervised pretraining techniques, such 
as denoising autoencoders and sequence-to-sequence models, facilitates better 
initialization and faster convergence during the supervised training phase. Additionally, 
regularization techniques like dropout help prevent overfitting and improve the 
generalization ability of the models, contributing to their strong performance on the 
evaluation metrics. 

The proposed method has significant implications for the field of sports biomechanics. 
By accurately denoising neural signals and characterizing dynamic arrow patterns, 
researchers and practitioners can obtain more reliable and accurate insights into the 
neural processes underlying movement control, coordination, and decision-making 
during athletic activities. The denoised neural signals can be used for various 
applications, such as: 

Movement Pattern Analysis: The denoised signals can be analyzed to identify patterns 
associated with specific sports movements, techniques, or strategies, enabling coaches 
and athletes to optimize training and performance. 

Injury Risk Assessment: By comparing the denoised neural signals with reference 
patterns obtained from healthy athletes, researchers can identify deviations that may 
indicate increased injury risk, leading to improved injury prevention and rehabilitation 
strategies [18]. 

Athlete Performance Prediction: The denoised neural signals can be used as input 
features to machine learning models aimed at predicting athletic performance, enabling 
data-driven decision-making in talent identification, training program design, and 
performance optimization. 

Neurofeedback Training: The denoised neural signals can be used in real-time 
neurofeedback systems, providing athletes with visual or auditory feedback on their 
neural activity during training or competition, facilitating improved self-regulation and 
performance enhancement. 

The dynamic arrow characterization aspect of the proposed method further enhances its 
applicability by enabling the recognition of specific movement patterns and their 
temporal trajectories. This information can be used to develop more targeted training 
programs, design personalized coaching strategies, and refine athlete performance 
analysis [19]. 

Additionally, the proposed method can be extended to other domains where signal 
denoising and dynamic pattern characterization are critical, such as healthcare (e.g., 
brain-computer interfaces, prosthetic control), robotics (e.g., human-robot interaction, 
gesture recognition), and human-computer interaction (e.g., virtual reality, gaming). 
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Conclusion: 
The research introduced a pioneering method for denoising neural signals within the 
realm of sports biomechanics by employing a stacking ensemble composed of hybrid 
CNN-RNN models aimed at characterizing dynamic arrow movements. By 
amalgamating convolutional neural networks (CNNs) for spatial feature extraction and 
recurrent neural networks (RNNs) for temporal dependency modeling, the proposed 
approach capitalized on the distinct advantages of each architecture [20]. CNNs excel 
in extracting spatial features, making them well-suited for capturing intricate patterns 
within the neural signals generated by sports biomechanics data [21]. Meanwhile, 
RNNs are adept at modeling temporal dependencies, crucial for understanding the 
sequential nature of dynamic movements such as those involved in archery. By 
leveraging this hybrid architecture, the research aimed to achieve a comprehensive 
understanding of both spatial and temporal aspects of arrow movements. Moreover, the 
stacking ensemble technique employed in the proposed method further elevated its 
efficacy and resilience. Stacking, a popular ensemble learning technique, involves 
combining multiple models' predictions to generate a more accurate and robust output. 
In this context, the ensemble of hybrid CNN-RNN models leveraged diverse 
perspectives and representations of the neural signals, enhancing the denoising process's 
overall effectiveness [22]. By aggregating the predictions from individual models 
within the ensemble, the approach aimed to mitigate potential biases or errors inherent 
in any single model, thereby bolstering the denoising performance and generalizability 
across various sports biomechanics datasets [23]. 

The research presented a sophisticated approach to neural signal denoising tailored 
specifically for sports biomechanics applications, with a focus on dynamic arrow 
characterization. By integrating hybrid CNN-RNN models within a stacking ensemble 
framework, the method aimed to leverage the complementary strengths of both 
architectures while enhancing overall performance and robustness. This innovative 
approach holds promise for advancing the understanding of complex dynamic 
movements in sports biomechanics and could find widespread applications in areas 
requiring precise neural signal processing, such as athletic performance analysis and 
injury prevention [24]. 

The results demonstrated the effectiveness of the proposed method in accurately 
denoising neural signals obtained from athletes during high-intensity sports activities, 
outperforming traditional denoising techniques and single-model approaches across 
various evaluation metrics. Additionally, the dynamic arrow characterization aspect of 
the method enabled accurate recognition of specific movement patterns and their 
temporal trajectories. 

The findings of this research have significant implications for the field of sports 
biomechanics, enabling researchers and practitioners to obtain more reliable and 
accurate neural data, leading to improved analysis, decision-making, and performance 
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optimization. The proposed method can be applied to various applications, such as 
movement pattern analysis, injury risk assessment, athlete performance prediction, and 
neurofeedback training. 

Future research directions may include: 

1. Exploring attention mechanisms within the hybrid CNN-RNN architecture to further 
improve the model's ability to selectively focus on relevant spatial and temporal 
features. 

2. Investigating the use of generative adversarial networks (GANs) for neural signal 
denoising, leveraging the capability of GANs to learn complex data distributions and 
generate realistic clean signals. 

3. Extending the dynamic arrow characterization technique to incorporate unsupervised 
learning methods, such as clustering and dimensionality reduction, to discover novel 
movement patterns and their temporal trajectories without relying solely on predefined 
templates. 

4. Applying the proposed method to other domains, such as healthcare, robotics, and 
human-computer interaction, where signal denoising and dynamic pattern 
characterization are critical for various applications. 

5. Integrating the denoised neural signals and dynamic arrow characterization outputs 
with other biomechanical data sources, such as motion capture and force plate 
measurements, to develop more comprehensive and multimodal analysis frameworks. 

By continuously advancing the field of neural signal denoising and dynamic pattern 
characterization in sports biomechanics, researchers and practitioners can unlock new 
insights into the neural processes underlying athletic performance, leading to innovative 
strategies for training, injury prevention, and performance optimization. 
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